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A new character formula is presented which leads automatically to character generators in the
positive form. The character generator for B, is constructed as an example.

PACS numbers: 02.20.Qs

1. INTRODUCTION

The problem of determining character generators for
compact semisimple Lie groups has recently attracted a
great deal of interest. Such generators are functions X (4,7) of
[ variables 4, and / class labels 7, such that when X (4,7) is
expanded in a power series in 4, the coefficients represent the
characters of the irreducible representations labeled by the
exponents of the 4:

XA =3 xa(m 147 (1.1)

i=1
The number / is the rank of the Lie group. The characters
v.(7) are polynomials in the 7; such that the exponents of
the 7 in a given term designate the components of a weight in
the irreducible representation (4 ) while the coeficient of the
term tells us the multiplicity of that weight.

In order to be useful as a character generator, X (4,7)
should be a sum of terms, each of which has no negative
coefficient in its expansion. Otherwise, the evaluation of (1.1)
would involve the cancellation of contributions from differ-
ent terms. A general formula which does not satisfy this re-
quirement has been known for some time." The difficulty of
rewriting the character generator in the required positive-
definite form, however, increases dramatically with the rank
of the group. Several authors have recently presented com-
binatorical methods which can be used to obtain positive
definite character generators for the groups 4,, B,, C,, and
D,.” Here we present a general formula which can be used
to obtain a positive-definite character generator for any com-
pact semisimple Lie group.

In Sec. 2, we review the Weyl formula for the character
generator, which is not positive definite, and discuss the
Weyl reflection group. In Sec. 3, we derive a similar formula
which does yield a positive-definite result. Section 4 gives an
algorithm for the simple determination of the elements of the
Weyl group and further simplifies the character formula. In
Sec. 5 we discuss the construction of character generators
and present some examples. Finally, in Sec. 6 we discuss
other applications of our character formula.

2. THE WEYL FORMULA

The character of an irreducible representation (4 } of a
compact semisimple Lie group can be written as®

Xa(m) = Ea(n)/Eoln), (2.1)
where the characteristic function £, is given by
H
Ex(m) = Tdet(S) T i)' * ™ (2.2)
S k=1
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with ;

7 = Hlnf"ﬁ (2.3)
In Egs. (2.1)+2.3) we have used the following notations and
conventions. The irreducible representations (IR’s) are la-
beled by the set of / integers A, such that the highest weight
M of an IR is given by M = A, m, with m, the highest
weight of the & th fundamental IR. / is the rank of the Lie
group. The basis of weight space is such that the m, form an
orthonormal set, m, = e,. The character y defined in Eq.
(2.1) is a polynomial in the 7 with terms of the form /T7}",
where w; is the ith component of a weight w of the IR in our
basis. Finally, the sum in Eq. (2.2)is over all Weyl reflections.
The matrices S, in Eq. (2.3) are the representation matrices
of the Weyl group in the basis of weight space.

The Weyl reflection group is generated by a set of /
elements S; under the restriction’

(SSY =1 (i,j=1,0). (2.4)

Ifi = j, then the exponent P; in (2.4} is equal to 1, that is, any
generator is its own inverse. If /#j, then we can obtain the
exponents from the Dynkin diagram. The generator S, is
associated with the nth circle of the diagram and the expo-
nent P, is 2, 3, 4, or 6 corresponding to the number of lines
joining the ith and jth circles being O, 1, 2, or 3. To construct
the group elements, we proceed iteratively. With each ele-
ment we associate a “word,” a product of w of the .S, where
w, the word length, is the minimum number of generators
needed to construct the element. Words of length w + 1 are
obtained by multiplying all words of length w by each of the /
generators S,. Words which can be reduced by the relations
(2.4) to a word which has already been found, either of the
same length or shorter, are then discarded. The starting
point is the identity 7, which is taken to have length zero. The
number of distinct words is the order of the Weyl group.
These are given in Table I for the classical Lie groups. These

TABLE L. Orders of the Weyl reflection groups for the classical Lie groups.

Lie group Order of Weyl group
A, (n+ 1)
B, C, 2" . n!
D, 2" 1. pl
G, 12
F, 1152
E, 51 840
E, 2903 040
E, 232243 200
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also represent the number of terms in the sum in Eq. (2.2).

In the basis of weight space, the matrices representing
the generators S, are

S, =1—AP, (n=1,.1), (2.5)

where I is the /-dimensional unit matrix, A is the Cartan
matrix of the Lie group and P, is the matrix whose elements
are all zero except for the nth diagonal element which is one.
When acting on a weight w the S, have the effect

S:w=w—w,a,, (2.6)

where w, is the nth component of w and a,, is the nth simple
root, whose components in this basis are equal to the nth
column of the Cartan matrix. From (2.3) we see that the k th
column of each of the S, is one of the outside weights of the
k th fundamental IR. An outside weight of an IR is one
which is obtained from the highest weight by Weyl reflec-
tion. The number of outside weights in the & th fundamental
IR is equal to the ratio of the order of the Weyl group to the
order of the Weyl subgroup obtained by deleting the & th
circle from the Dynkin diagram. For example, the Dynkin
diagram for B, is o—c—» . Eliminating the first circle
leaves a—m» , the diagram for B,. The number of outside
weights in the (1,0,0) IR of B, is therefore equal to the order
of the B, Weyl group divided by that of the B, Weyl group:
48/8 = 6.

A generating function can be constructed for the Weyl
characteristic function by multiplying (2.2) by Il4 i* and
summing over all (4 )>(0). The result is

- ! Mk
A= YdetS) [] ——. (2.7}
i ; kl;Il 1 —A,.7;

The coefficient of 4 i“ in the expansion of (2.7) is the charac-
teristic function £, (). In order to turn (2.7} into a generating
function for characters, we simply divide by £,(7)

X(4,m) = Z{4,m)/Eo(n). (2.8)

The coefficient of 4 ? in the expansion of (2.8) is the charac-
ter v, (7). The scalar characteristic can be written as

=I]e,i—-¢,h (2.9)
P
where the index p labels positive roots and
0, =TIr" p=17"
J=1 i=1

Here n,, is the number of simple roots a; contained in the pth
positive root and the exponent of 7, in p; is the ith compo-
nent of «;. As usual, 4; is the Cartan matrix.

Whlle Eq. (2.8) prov1des us with a closed form expres-
sion for the character generator, it is not in a form we would
like. First, the factor det(S )in (2.7)isequalto( — 1)*, wherew
is the word length of S. Therefore, terms appear with both
positive and negative coefficients. Second, £,(%) introduces
poles into each term of (2.8) which are spurious since they
must disappear when all terms are added. Our problem is to
rewrite {2.8) as a sum of rational expressions, each of which
has a polynomial numerator with positive coefficients and a
denominator which is a product of factors of the form

(1 — A,T7;"), where A, is the variable labeling the ith funda-

(2.10)
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mental IR and w; is the jth component of one of the outside
weights of that IR. By counting the denominator factors in
each term of [2.8) we can see that each of the rational expres-
sions in the final form will have }(r + /) denominator factors,
where r is the order of the Lie algebra.

3. AN ALTERNATIVE FORMULA

For a given irreducible representation (4 ), the expo-
nents of the 7 in the character y, () provide us with a com-
plete set of weights 4 . This set can be written as a sum of
subsets 4 ¥, where k is the number of simple roots which
must be subtracted from the highest weight in order to ob-
tain a weight in the subset. The subset 4 § contains the high-
est weight, whose components in our basis are (4 ,,....,4,).
The usual procedure for determination of the complete set of
weights proceeds iteratively in £.® All weights in the kK = 0
level are known. If all weights in levels 0,...,k are known,
then the weightsin level & + 1 are determined by the follow-
ing algorithm: Let w be an arbitrary weight in 4 §. If its nth
component w, is greater than zero, then by (2.6) it has a Weyl
reflection w — w, a,,. Both of these weights are part of a
chain which includes w — @, so that this latter is a weight in
level ¥ + 1.Ifw, isless than or equal to zero, thenw — «,, is
a weight if its reflection w + (1 — w, )Ja, is partof an o,
chain containing w.

In order to construct complete sets of weights, we shall
use an equivalent procedure which proceeds iteratively on
the word length of the Weyl reflections. We shall show that if
S is a Weyl reflection obtained by multiplying the minimum
number of generators S;, then the character y, (%) is given by

L
5 [ (3.1
S k=1
where the sum is over all elements of the Weyl reflection

group and where S'is an operator obtained by replacing all S,
in S by

S, ={1—p) 'S, = 1) (3.2)

The quantity p; defined in (2.10) has 77 exponents corre-
sponding to the weight of the /th simple root.

Our method of construction of the complete set of
weights is the following: We take the highest weight M to be
the sole member of the set I"°. Acting on M with each of the
generators S, (words of length 1), we obtain a set of reflec-
tions and implied chain members which are placed in the set
I"''. Notice that this set does not include M. Continuing in
this fashion, we act on all members of the set I' * with the
generators and include all new weights in theset I *'. The
procedure is continued until no new weights are introduced.
In order to prove that Eq. (3.1} is valid, we must prove that
the operators S corresponding to elements of word length k
of the Weyl group produce all terms 5", with wel™ %, and no
others. :

First, we prove that the only possible operators S corre-
spond to elements of the Weyl group. It is tedious but
straight forward to prove by construction that $,5, = — S,

and that §,5; = §,3,, 5,5,5, = §,5.5,, 55,55, = 5,5.5,3,,

or S-S»S.SVSYS- S»S.SvSvSS. when the ith andjth c1rcles
of the Dynkm dlagram are connected by O, 1, 2, or 3 lines.

Xan =
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These relations can be used to eliminate any word which is
not of minimum length or which is equal to one of the same
length. Thus the sum over S in (3.1) is complete.

Suppose that a weight w has a positive ith component
w;. Then by (2.6) the reflection of this weight under S, is
w — w,a;, where a; is the ith simple root. This implies the
existence of a chain of weights w, w — «;,...,.w — w,a,. The
effect of S, on 7* = In* is

— St = S (3.3)

k=1 k=1
Notice that S, introduces terms corresponding to the addi-
tional members of the chain. If w belongs to I"* and is as-
sumed to have been produced by an operator S of length &,
then these new weights are produced by the operator S, of
length & + 1andappearin I"* * ' as required. Notice as well
that if I"* contains both w and its reflection S,w, then no
additional weights are produced. The only potential prob-
lem occurs if w has a negative ith component and is unac-
companied by its reflection. In that case, the terms intro-
duced by S, are negative. We shall show that this never
happens.

There are only two ways in which a weight with a nega-
tive /th component can occur. First, it may occur as a part of
a chain generated by S,. Second, it may be produced when
another operator, S'J acts on a weight with a negative jth
component and which is unaccompanied by its j-reflection.
The latter possibility can be neglected if we concentrate on
the first occurrence of this potential problem. Suppose that w
is a weight obtained by the operation S. Then §,5 gives us
the weights w — pa,, where p = 1,...,w,. Notice that
w — w;o; is unaccompanied by its i-reflection. This is no
problem since S,S,S is not a reduced element. If we now act
with§'j, where S’,S'j 7&3]-5‘,. (if S, and S'j commute, we put S’j
into '), we obtain w — ga; — pa,, whereg = 1,...,

(w; — pA;;)>1 since the component 4; of the Cartan matrix
is the jth component of the ith simple root in this basis. Let us
suppose that the ith component of one of the above weights,
w; — qA; — 2p, is less than zero. If the /-reflection of this
weight, w — ga, — (w;, — p — g4 ;)a,, is one of the weights
above, then we have no problem at this stage. Since 4, is a
negative integer and since w; — p>0, we see that the reﬁec-
tion has the form w — ga, — p'a; with 1<p’ <p<w; so that
this is in fact one of the weights above. This argument is
easily extended if we act with further operators and so we
conclude that if some operator S produces a term corre-
sponding to a weight w with w, <0, then either a term corre-
sponding to S,w is also produced or S.5 is not a reduced
word. Therefore, Eq. (3.1) does accomplish the construction
described above.

Asan example, let us construct the character of the (1,2)
representation of SU(3). The elements of the Weyl group are
LS,S,S,S,, S 51, and §\S,S,, where S;: 9, = 7, '9, and
S>: 7, = 1,1, '. The simple roots have components (2, — 1)
and( — 1,2)sothatp, = 5in, 'andp, = %, '52.Iactingon
77,75 gives us this highest weight term back again. The other
reflections give

S'l: mus ="' — /(1 — i, J=771_ 73,
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Sa s =mims P =)/ (L= ‘g3 =min; 2+ i,

S8 pmd = e+ tm —mins P =Y/
(1—=nin )
=" "m0 s 4

S8y mmd = (ims * — a7 '/ (=7 ')
=m0+

$:8Sc nmd = s =i =V
(1—nin; )
:7]]-»27]2-1 +7]272+7)l_ l'

The sum of these terms provides the character y |, , (7). No-
tice that the last line can aiso be obtained from the equivalent

word S5,5,5,.

Equation (3.1) can be turned into an equation for the
character generator by replacing 7]2* by (1 —A4,1,)" ", sowe
have

- i
Xam =35 IO —A,m,)" " (3.4)
S k=1

It is important to notice, as can be seen from the discussion
earlier in this section, that each term in (3.4) is positive.
Moreover, the only factors which occur in the denominators
of these terms correspond to the outside weights of the fun-
damental irreducible representations. Therefore, this
expression has neither the negative terms nor the spurious
poles which occur in (2.8).

There are two relationships which are useful in evaluat-
ing the terms of (3.4). First,

S,:(FG)=(5,:F)G + (S,:F)(S,:G) (3.5)

allows us to act separately with S, on each factor of an
expression. Second, if w is an outside weight of some funda-
mental irreducible representation which is labeled by 4, then
the corresponding denominator factor satisfies

S:(1—An™)~" = (48,:")/(1 — Ay™)(1 — AS,;:™).(3.6)

Thus each term in {3.4) generated by a word .S of length 4 has
h + [ denominator factors. Since the word of maximum
length has 4 = i(r — /), the terms in the final expression for
the generating function will have terms with }(r + /) de-
nominator factors, as is the case for the Weyl formula.

4. DETERMINATION OF THE WEYL ELEMENTS

In practice, the construction of the elements of the Weyl
group by using the relations (2.4) to eliminate equivalent
words is a very tedious one. It is far more convenient to
construct them by considering their action in weight space.

In order to simplify the procedure further, we shall con-
sider the Lie subgroup, and corresponding Weyl subgroup,
obtained by deleting one of the circles from the Dynkin dia-
gram. We shall eliminate the / th circle in our discussion, but
the arguments presented are completely general. The set {S }
of elements of the Weyl group can be factored into a set { H }
of subgroup elements and a set { 7| such that

{(S}={T}H}. (4.1)
The elementsin the set { H } are generated by the/ — 1 gener-
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ators S,,...,5;_ ;. These elements do not affect 7,, the highest
weight term in the character of the / th fundamental IR. We
can therefore determine the elements of { " } in terms of their
action on 7,.

A simple graphical algorithm suffices to determine the
elements of { 7" }. The highest point on the graph is labeled by
7,. Points on each level are determined from those of the
level above by applying S; to the label of each of the higher
points iff that label has a positive exponent of 7. The gener-
ated point, labeled by the action of S; on the higher label, is
connected to the higher point by a line labeled by S;. The
action of S; on any label is obtained by replacing

U (4.2)
in that label. If a point is connected to those of the level above
by more than one line, then all but one of those lines are
eliminated. Each point on the completed graph represents
one of the outside weights of the corresponding fundamental
IR and is connected to the highest point by a unique path.
The product of the labels of the lines of this path, with higher
labels to the right, represents one of the elements of { 7 }. The
connection of the highest point with itself represents the ele-
ment I.

The graph shown in Fig. 1 determines the outside
weights and elements of { T} for the (0,1,0) representation of

FIG. 1. Outside weights and Weyl generators for the (0,1,0) representation
of B,.
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B;. The dashed lines are to be eliminated from the graph. The
resulting elements of { T} are: I, S,, S,S,, §,5,, $55,5,,
555352, 52535185, 851555352 515538155, §35,535155,
$1535,5,5,5,, and 5,555,555,

The elements of [ H } can be factored further by elimi-
nating other circles of the Dynkin diagram until, ultimately,
only a single circle representing 4, remains. In the example
above, the diagram o——x—=- for B, was reduced to © o of
A, XA, . Theelementsoftheset { H } are(] + S,)(/ + S,). The
elements of {S | for B, are the 48 terms in the product
{T){H }.Thesetofelements { S } appearingin (3.1)and (3.4)
are just those of {§ ] with all S, replaced by S,.

The set {S'} contains a single element S,, of maximum
length which is the product of the elements of maximum
length in its factor sets. We shall now show that the sum of
the § can be replaced by S,,, the operator obtained by replac-
ing each of the S, in S,, by (I + S,). Consider the product of
the A rightmost factors in S,, and assume that all words
generated are inequivalent. We now multiply this set of
words by the next factor, (I + S,). Multiplication by I clearly
reproduces the previous set of inequivalent words. Let us
suppose that S'is a word in this set and that ;S =S"is
equivalent to a longer word in the set. Then since
S8, = — 3§, we have 5,(S + §') = 0 50 that no new words
are introduced which are equivalent to words in the previous
set. The process terminates when no new word can be intro-
duced by multiplication by any (I + S.). This is the case for
Sy since its factors can be rearranged to place any given S,
on the left. Multiplication of (I + S.) by itself gives (I + S)
back again so that (7 + S,)8,, = S,,. The set of words gener-
ated by S,, is complete and inequivalent.

Equation (3.4) for the character generator can therefore
be written as

01— Ao (4.3

k=1

X(4,m) =5,
The character generator for B,, for example, becomes
X, (4,7)
= (I + S + S+ S + S + S + S + 5

X+ S+ S))[(1 — 4 A1

(4.4)

This form of the character generator, while equivalent to
(3.4), is more practical. The reason is that the sum in (3.4) will
yield terms with fewer than {(r 4+ /) denominator factors
which must be rearranged to produce the final form. In Eq.
(4.3) the result of multiplication by each (f + §;) can be ar-
ranged into terms with one more denominator factor than
the previous one and with no negative numerator coeffi-
cients so that no rearrangement is necessary to produce the
final form.

Since S\, = T, H,,, where T, and H,,, are the longest
words in {7} and {H }, respectively, we should be able to
write the character generator X (4,7) in terms of the charac-
ter generator X, (4,n) for the subgroup obtained by deleting
the / th circle of the Dynkin diagram. This latter depends
upon 4, and 7, for k = 1,...,/ — 1 so we must introduce the
implied %, dependence. To do this, we introduce the / — 1

M1 —Aom,)(1 —
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quantities
-1

M= ZA%(AZ:

k=1

(i= 1,0 — 1) (4.5)

and write

X{Am) =Ty (1 —4m) "X, (4 m7pf), (4.6)
where in (4.5) 4 2 and A " are the group and subgroup Cartan
matrices, respectively. These relations are easily generalized
to subgroups obtained by eliminating other circles. Equation
{4.6) allows us to work with chains of subgroups, so that we
do not need to work out each character generator from
scratch.

5. CONSTRUCTION OF CHARACTER GENERATORS

Equations (3.4), (4.3), and (4.6) provide us with three
expressions for the character generator. The first of these is
particularly useful if the Weyl group is small. Each term
gives a positive-definite result with the only drawback being
that the terms do not have the same number of denominator
factors. Some rearrangement is necessary to put the result in
the simplest form. The second the third formulae, which are
equivalent, give us terms with the same number of denomi-
nator factors at each step with the third exhibiting the possi-
bility of construction through a subgroup chain. In practice,
however, the second equation, (4.3), seems to offer the easiest
construction since the algebra of the S, can be used to sim-
plify the work at each stage.

The basic idea of this last method is to use (3.5) and the
similar relation

I+ S.): (FG)= (I + 8,):F)G + (S;:F)S;:G)  (5.1)
to move the S; operators through each of the (1 — 4,7, )"
in turn, collecting and simplifying after each denominator
has been passed before moving to the next. For example, the
character generator for B, [SO(5)] can be written
XAy = U+ S +S5)I+5)

X+ 81— Aymy) (1 —Amy) ™" (5.2)

We can immediately move (I + S,) through the factor

(1 — A4,m,) . Using Eq. (5.1) to move (I + S,) through now
gives
(L + S+ S+ 801 — Aymy) ™' 1T+ 8)(1 — 4,p,) "
F U+ S+ 8ISl — Ama) ' 18, + 8))(1 — d,m) "
(5.3)
Notice that S,(1 — 4,7,)~" = 0'so that the factor S,(1 + S,)

in the second term can be replaced by S5,S,. We now move

(I +S,) through to give

U+ S + )+ 51 — Aa) ™" I+ Si)(1 — A,) ™!

+ (I + SIS\ + 51— Amo) 18T + 511 — A,m) ™!
+ U+ ) +5)8:(1 — Am,)'18,5,(1 — 4,m,) 7!
+ I+ 32)[5152(1 —Aznz)_']S']S'ZS'l(l —‘A1771)_l-(5 "

The second term in (5.4) vanishes since S,(I + S,) = 0. Mov-

ing (I 4 S,) through gives
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[+ S0 + S+ )1 — Azm) 1T+ S)(1 — Ayp) ™
+ (ST + S + 81 — Ay7,) 1850 + Sl — Ay~

+ [0+ ST+ S1)(1 = A7) 711881 — A )~

+ [SH + gl)sz(l —Aznz)_’]325’23’1(1 —Am,)"!

+ [+ 58,85(1 — A,m:)~'18,8,8,(1 — A,my) ™"

+ [5:8:8:(1 — 4,7,) 7' 18:8,8,8,(1 — 4,m) " (5.5)
The last term vanishes since S,5,5,5, = §,5.8 S, and
S,(1 — A,m,)” "' = 0. The second, third, and fourth terms
have the same factors following the bracket since S, +8))

can be replaced with §,5, and since S,5, = — S,. Evaluat-
ing the quantities in brackets we have the three terms

X(d,q)=[(1—4m; )1 —Am )]

XSISZSI(I _141771)A1

+ [(1 =4y N1 — A, ')

X(1—Ammy )]

XSZSI(I "1‘11771)7l

+ [(1 = Aamy Y1 = Ay ')

X (1= Aymms N1 —Am,)] ™

X(I+S'1)(1 —A1771)71~ (5.6)
The operators S, now act only on the 4, factor. Since they

form reduced words of the Weyl group, the results will be

positive definite.
In evaluating the brackets in (5.6), we have used (3.5),

(3.6), and the relations S;:, = 9, '3, S, = 71,95,

p1 =115 % and p, = 9 'n3. In order to see how this pro-
cedure works, we shall evaluate S,5,(1 — 4 \m,) ! starting
with the partial result

Sl —4m) ™' =4m "5 (=4 )l — Am)]~

(5.7)
Let us now operate with S,. Notice first that any denomina-
tor factor not containing %;, or which is accompanied by its i-
reflection, can be treated as a constant as far as S’,. is con-
cerned. We can therefore ignore (1 — 4,7,)~ " for the
moment. With (3.5), the action of 3'2 on the remaining factors
becomes

[Sz(l— 17717l 2) 1](/11771 772)
+ [Sz(l_ 1771_l 2 _]]Sz(Aml 77%) (5.8)

The final factor in the second term is, with (3.2) and the
definitions of p, and of S,: 77, above,

S'z(Aﬂ?f 'n3) = (A ) — A, 'y 2)] /(1= 'n3)

' =Amn; *+ 4, (5.9)
According to (3.6),
S(1— A 'n3)!
= [Sfdin "L = A 931 — Sad my '3
:(A1771772; +A4,)/(1—-Am ! 2)(1_ iy )
so that (5.8) becomes (5-10)
AmT 'y + Ay /(10— AT )1 — A,m,m57 )
+ (A, +Amm; /(1 —A,m,7m3)
=, +Amm: /(1 —Am )1 — 4,3
(5.11)
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The result for S,S,(1 — 4,7,)~ ! is (5.11) with the denomina-
tor factor (1 — 4,7,) reinstated. Evaluating the other factors
in (5.6) similarly, we finally obtain the B, character generator

X{dm) = [1/1 —4m,)1 —Amm; )
+ A, +4m /(1 —A4m, 57 )
X(1 —4m, 77272)
+A4m 1+ A)/(1—Amm, 2)(1 —Am l)]
X [(1—=Aym; Y1 — Ay 'n,)(1 — 4y7,)
X(1—=4m'n3)] ™! (5.12)
This result agrees, to within a change of basis, with the gen-
erator obtained by other methods.’
The principal advantage of this method is that it allows

us to do the construction in stages. For example, the charac-
ter generator for B, can be written

X () = (I + S + S + SO + S + S0 + 55)
X(1 = Ayns) = + ST + )

X(1—Aym,) " (I + 8y)(1 — 4,m,) 7", (5.13)

+ 065,58, + 0:5,5; + 05558, + Q555 + 0105, + 01,

and
Qi =P/(1 —Am l)(l —Amn, 1)’

5,8,5,8, = 8,5,8,5,. After moving the operators (I + S,)
through (1 — A;7;)~" we are left with

X(4,m) =PI + 80 + 5,)(1 — A7)~

I+ 8)(1 — Aym,) ™, (5.14)
where
Pldyn) = PSSSSS, + PESSS, + PSS,
+ P,5,5,8, + PS,S, + PS, + P, (5.15)

and
Py =1/(1 — Asm5 N1 — 43m5 'n3),
Py=P/(1 —4;m 'nm5 ),
Py=P/(1 —Asnmy '), Py=Py/(l —A4sm 'n,),
Ps = (Py 4+ Ay 'nsP)/(1 — Aspymy 'n3),
Ps=P/(1 —Asmym; "), P, =Pg/(1 —Ayms). (5.16)

We therefore have the complete A, content. In the next stage
we move the operators through (1 — 4,7,) ! to give

Q,=[Po+A4mm P/ —Ammy /(1 —Am 1 —Amm?),
Q, =[P, + 4,1 'P/(1 —Am )]/ —Ammy Y1 —Amm33),
Qs = [Ps+ A1+ mm5 P + Ay M1+ A)P/(1 — Ay, WL — Aymms 2]

X[(1—Am )1 —Am 93]~
Os=Q/(1 —A4m 1772)’

Qs = [Ps +A4m ]P4/(1 _A1771_1)+A1(1 + 772773_2)(P3 +4m IPZ/(I _A1771_l))

X(1 —A1772773_2)_1]/(1 ~A\mn; l)(l —Amy 177§),

Q0 =(Qs + 4,7, '7,Q05)/(1 — 4,7,),

s = [Ps/(l — A5 2) + (Ps [A177|"72‘ l/(1 —Ayms 2)

+Am; '3 /(1— 4,5 177§)] +4,m7 1Pa[]/(l —Ams 3
+A4m; 17]%)/(1 —An; lﬂ%)]/(l —Am ])/(1 —Amnm; l)

+4,(14+4,)0:/(1 —Am; lﬂg)]/(l — A, ]772),

Q= Qy/(1 —A47m,),
Q=[P +4,(1+ 715 )Ps/(1 — A5 )

+Amn; 1(1 +A4,)Ps/(1 — Aymm, l)(l — Ay %)
+Am "1+ 4,)P/(1 — A (1 — A, i1 _A17]277372)]

X [(1—Am ') — Ay ']
Q11 = Qi/(1 —A4,m,).

X (A7) = QA A + 8,1 — dym) 7", (5.17)
where

(5.18)

(5.19)

We now act with our operators on the remaining factor (1 — 4,7,) " to obtain the final result for the B, character generator:

1 O.R
X =3 =
K=l — Aoy 75)(1 — Aom,)
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where
Rll = 1,

Rio=Am "0 /(1 —Am7 'n3), Ro=Ammms M+ 7,

—1

73)/(1 — Aypmams 2

Ry =Am7 "2y M1 + 05 ') [ V/(1 — 4mmams 3 + An7 '3 /(1 — A7 'm3) 1 /(0 — A 'mams ),

R,=Amin; (1 +4,m)/(1 — Ay W1 — Ammms %),

Re=[4,(1 + A)(1 + 4;m)/(1 — Aoy 'p3ms A1 — 4,575 %)
+ Ay 7+ A/ — Ay W — Aapimans )
+ (A i+ Ay) + Adm i (L + 97 'n3ns W — Ay 'pims 1 — A, 177%)]/(1 —Amms 03,
Ry = [A,(1 + 4,)(1 + 4;m)/(1 — A,mim; 1 — Aoy A A7 (1 + A /(1 — Ay 'y 1 — Aamimans )

—1

+ A3 (1 + 93

77§ V(1 —Am; 177% 75 (1 —Am, 177%)]/(1 — A 27]2),

Ry = [Ay(1 + A)(1 + 4,m)/(1 — A 'y M — Aymmams A — Ay *03)
+ A5 L+ A /(1 = Agpins N1 — Agymans PN — Aoy )
+ A A+ Ay + Ay (U4 7 i WAL — A gy AL — Ao 'L — Agmymy 3)
+ (1 4+ A1 + A )/(1 — Ay N1 — Ammgms 1 — 4 )
+ A7 '3y A+ A /(L — A iy 1 — Aymans A1 — Ao )

+ Ay 'l + 9 '3V — Ay iy (1 — Ay

XA 7 /(1 — A ' 3),

1"7§)(1 —Am 2772)]

+ A3y 'y (1 — A W1 — Ay ) + AL+ A/ — A 'nins A1 — 4 '73)]

-2

7))

+4 dmins ' AL+ g7 (L — A N — Aypmans A1 — Ay (1 — Aonims *3)

M7 ' — Amms A — A my Py3))

77 '3 — Amm5*3))
N2 177§ 1 —Amm, 2’7§ )

-1

N1 — A '3 — Ay 'y '3 — Ay )

-1

7 '3 — A 2"72))]

Ry = [y (1 + 4,)/(1 — A 'pims 1 — Ay )
X1+ 7, )1+ 97 '93)/(1 — Ay N1 — Aynyms *n3)
Ry = [A4;mm5 (1 + A1 + 07 ')/ (1 — 47 '3 957 (1 — Aoy 21 — Aoy (1 — Amym;
+ AL+ A) 1+ 97 ')/ (1 — Aoy 'ams 31 — 4
+ (1 4+ 4,)1 + Am; '3)/(1 — Ay mamy N — Amans A1 — Ayt
+ A,y (U + Ans ')/ — Anin N1 — Aypimans 21 — Aoy,
+ A7 31+ AN+ Aomy 'n3)/ (1 — Aomy 'y
+ AL+ 7)1 — A '35 N — Ay )1 — Ao g 31— Aoy )
+ A Pl L+ )AL — A ey A — Agny 3N — Ao s 'L — Aymy )
+ A1+ 7)1+ 7in7 V(1 —Amin; N1 — Aoy 31 — Aymy
XA s A+ 5 '3 (L — A s ),
R, =

[Aymms 31 + A1 + 7 7)1+ 7 M — A7 s A — A mans A1 — Amms A1 — Ay *n3))

+A3niny ' L+ g7 )+ AL — Ay N — Aygmoms 1 — Apms A — Ay *3)
+ A3+ AN+ 77 'l + 5 ')/ — Ay ' )1 — Ao 'L — Ay ms AN — Ay *3))

+ (1 4+ 401 + Ay Y1+ A37)/(1 — Ay 'n27;

+Amiqy (1 + Ay N1+ Ay "N — Ay

1 —d;moms 1 — A7 gy '3 — Ammy *3)

—1,,2

1)(1 — Ay I — A7 'n; 73)(1 — Ammy 277%))

— 1,2 —12)

+ A5 (L + A+ Ay N+ 17 /(1 — Aoy "5 A — Ay 31 — Ay 'y '
X(1— Ay ) + A5 'mans (U + 901 + Am W — A 'nins (1 — Aopmans )

X(L = o™ ' 'L — Ayny” *02)) + Ao (1 + (1 + Ao VA — A i 21 — A ')
X(U—=dymy 'y 'L — A 2n0)) + A1+ 4501 + Ay )1 + 7)1 — Amin; N1 —Amm,m57 )

X(1— Ay 'ny "'pi)1 — Ay 2772))]A2772_ YL — Ay N1 — Ay s ).

This method not only simplifies the construction, it also ex-
presses the character generator in a relatively compact form.
If Eq. (5.20) were written out, the result would have 127
terms, each with 12 denominator factors and a polynomial
numerator.

6. DISCUSSION

Equation (4.3) provides a powerful method for the con-
struction of character generators. However, its usefulness

2385 J. Math. Phys., Vol. 24, No. 10, October 1983

(5.21)

[
may be questioned since for higher rank groups these genera-

tors may simply prove too long to write down. This is evident
from a comparison of the B, and B, character generators
which were constructed in the last section. Nevertheless, this
new form may prove useful as a starting point for the con-
struction of other generating functions. There is some prece-
dent for this hope: The construction of the generating func-
tion for the G, Clebsch-Gordan series® used as its starting
point the Weyl form of the character generator discussed in
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Sec. 2 rather than the positive definite form. In this way, the
explicit Weyl symmetry could be used to simplify the prob-
lem.

One obvious application of qur character formula is the
testing of other generating functions. Such generating func-
tions enumerate the irreducible representations of a group
which are contained in some infinite set of reducible repre-
sentations. If G (4,B ) is such a generating function, with the
exponents of 4 labeling the reducible representation and the
exponents of B labeling the irreducible representations, and
if X (4,7) is a generating function for the characters of the
reducible representations, then

X(A4m) =Sy: G4d). (6.1)

It is particularly straightforward to set up a recursive com-
puter program to calculate the right-hand side of this expres-
sion numerically, so we can easily test the validity of the

expression for G (4,8 ). This procedure uses the relationship

(I + Si)F(ﬂl,---,??f,---,nz)

=(1 _pi)—l[F(vlv'"ni/pi’“"nl) —piFE My
{6.2)
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It has been used to test the validity of Egs. (5.21) and also to
verify a generating function for F, D B, branching rules.'’
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Elements of finite order in the compact simple Lie groups SU(2), SU(3), SU(4), Sp(4) or O(5), and
G(2) are considered. We provide the characters of the elements on irreducible representations of
the Lie groups by assigning appropriate numerical values to the variables on which the characters
of representations of the Lie group depend. In this way we specialize generating functions for the
characters of the representations of the Lie groups to the generating functions for characters of the
elements of finite order. Particular attention is paid to rational elements, all of whose characters
are integers; they are listed and the generating functions for their characters are obtained in a
simplified form from which the characters can be read. Gaussian elements are also studied in
detail. Their characters are complex valued with integer real and imaginary parts.

PACS numbers: 02.20.Qs

1. INTRODUCTION

Elements of finite order (EFQ) in compact simple Lie
groups could be a very practical tool in applications of repre-
sentations of Lie groups provided the characters of these
elements in irreducible representations of the Lie groups
were readily available. With only a few exceptions'™ it has
not been the case until now. In parallel with the development
of a general computational procedure for the characters of
EFO in Lie groups® we describe here an independent ap-
proach to the problem exploiting known generating func-
tions for characters of representations of the Lie group. In
this article we consider in detail EFO in the five simple Lie
groups of types A, 4,, A5, B,, and G, or, respectively, SU(2),
SU(3), SU(4), Sp(4) or O(5), and G(2).

The theory of EFO in Lie groups is in its early stage.
There is no account of the “state of the art” in the literature.
During our work on the general procedure for machine com-
putation of the characters of EFO ° we found it necessary to
fill many gaps of the theory. The present article is self-con-
tained in what concerns its main objective: providing char-
acters for an arbitrary given EFO in one of the five Lie
groups by means of the corresponding generating function.
Since characters are invariants under the action of the Lie
group, we are interested only in conjugacy classes of EFO
rather than individual elements.

The generating functions for characters of representa-
tions of simple Lie groups, or simply character generators,
were introduced in Ref. 6 where also the first examples were
calculated (for the groups 4,, 4,, B,). Subsequently more
efficient combinatorial methods were invented”'! which
give, in principle, the character generator for any compact

* Work supported in part by the Natural Science and Engineering Research
Council of Canada and by the Ministére de ’Education du Québec.
® Present address: Caltech, Pasadena, CA 91125.
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Lie group. A character generator is a rational function of 2/
variables, where / is the rank of the Lie group. The first /
variables are those of the characters. The remaining ones are
auxiliary variables whose powers, in the power expansion of
the character generator, indicate irreducible representations
of the Lie group. The coefficient of each power is precisely
the character of the representation specified by the power.
The main idea of our approach is to fix the character varia-
bles in such a way that the character of an irreducible repre-
sentation of the Lie group is specialized to the character of a
given EFO. The character generator for representations of
the Lie group is thus transformed into the character gener-
ator of the chosen EFO.

Perhaps the most interesting EFO are the so-called ra-
tional elements whose character values are always rational
(hence integers). Here we have determined all the specializa-
tions of all the rational EFO for the groups 4,, 4,, 4;, B,, and
G,.

Although this is apparently simply a process of passing
from the general to the particular, a glance at any one of the
character generators, say 4, (2.3}, and the corresponding
table of specializations (Table IV) shows that there is consid-
erable simplification in each case. Only in the specialized
form is it possible to grasp the entire content of the set of all
character values of a given EFO (take for example [1212] in
A;). As a result we are able to tabulate the complete (finite)
set of all character values taken by the regular rational ele-
ments of our five groups.

We found that prior to specialization it is very conven-
ient to rewrite the character generating functions in such a
way that all the coefficients appearing are characters (rather
than simply Weyl invariant expressions). The resulting
forms are cleaner than the standard ones appearing in the
literature.

In Sec. 2 we recall the character generators for the five
simple Lie groups in a suitable form. In Sec. 3 we specialize
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them to a general EFQO in each group. In Sec. 4 we describe in
detail the character generators for the elements whose char-
acters take only integer values on any representation of the
Lie group. Gaussian EFO are considered in Sec. 5. The final
section contains some comments, remarks, and examples.

2. CHARACTER GENERATORS

12 123 12 1 2
0O 00 000 OB €&
A
1A Ay B 5

FIG. 1. Coxeter-Dynkin diagrams and numbering of simple roots.

Here we rewrite the five character generators in a suitable form for our purposes.

An irreducible representation of G is specified by its highest weight, using the standard conventions and numbering of
simple roots of G, as shown in Fig. 1. The character of the representation (4,,...,4,) is denoted by {4 1,...,4; ). It is a function of /
variables which we do not need to specify here. For examples, see Refs. 6-12.

The A,-character generator, Eq. (1) of Ref. 6, can be rewritten as the rational function

1

T aga: — T A =047

(2.1)

where (1) is the character of the two-dimensional representation (1) of 4,. Since the character (0) of the trivial representation
equals 1, we do not use (0). The coefficient of the power 4 * in the power series is precisely the character of the 4,-

representation (k ) of dimension & + 1.
The A,-character generator, Eq. (2) of Ref. 6, is

1—PQ

(1—(10) P+ (01) PZ — P31 — (01) Q + (10) 0> — Q?)

(2.2)

Again in the corresponding power series, the coefficient of the power P?Q ? is the character of the A,-representation ( p,g).
The A,-character generator can be inferred from the content of Ref. 13, or computed directly using Ref. 7. It can be

brought to the form N /D, where

N=(1—-B?(1—-AC + (010) ABC + A°B + BC? —AB*C + A*B*C?)

— ((001) — (100) B) AB (1 + BC? — ((100) — (001) B) BC(1 + A 2B), (2.3)
D=(1—(100) 4 + (010) A2 — (001) A3 + 4%
X [1 —(010) B+ (101) B* — ({200) + (002)) B>+ (101) B* — (010) B + B*]
X (1 — (001) C + (010) C?* — (100) C* + C*¥.
Here the coefficients (4,4,4;) are the characters of representations (4,4,4;) of 4;.
The B,-character generator, Eq. (3) of Ref. 6, can be written as
(14+B)1+A42B)— (01) 4B 2.4)

[1+A4* — (O1)(d + A7) + (1 + (10))J4 21 [1 + B* + (1 — (10))(B + B) + (1 — (10) + (02)) B*]

The coefficient of the term 4 °B* in the power expansion of (2.4) is the character of the representation (b, a) of B,.
The last character generator we need is that of G, of Eq. (4) of Ref. 12. It can be brought to the form N /D, where

N=14+AB*+ A+ A4°B*+(1+ (10))B+A*B*) + (1 — (20)}(4B + 4°B?)
+ (14 (10))(B* + A*B?) + (1 + (01))(4 >B + A*B°) — ({20) + (01))(4B* + 4°B?)
+ B+ 4B+ (1— (10)){4°B + AB®) + ((11) + 2(10)) 4 *B?,
D=[14+A°+(1— (10))4 + A5 + (1 + (O1))A2 + A% + ((O1) — (10) — (20)) 4]
X[l 4+ B®+(1+{10) — (O1))(B + B®) + (2 — (11) + (30))(B* + B*)

+ (1 + (10) —2¢01) + (30) —(02)) B’].

3. CHARACTERS OF ELEMENTS OF FINITE ORDER

The character generators of Sec. 2 generate characters
of all elements of the simple Lie group G on all its irreducible
representations. Each character generator contains as coeffi-
cients the characters of a few lowest representations of the
group. These character-coefficients are functions of / contin-
uous variables. Choosing a particular element x of the group
is equivalent to fixing the character variables. Consequently,
substituting for the character-coefficients in the character
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(2.5)

r
generator these fixed values of the characters, one gets the

generator of characters of the element x on irreducible repre-
sentations of G.

A convenient way to specify an EFO was introduced by
Kac?: the sets s = [s, 5,,...,5;] of relatively prime nonnega-
tive integers are in one-one correspondence with the conju-
gacy classes of EFO in G. These numbers are thought of as
being attached to the extended Dynkin diagram, where the
extension is the Oth node of the diagram.

Below we particularize the general properties® of ele-
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ments of finite order and their characters to the cases under

consideration.
The order of the EFO designated by s is N = MC ac-
cording to

M C
1 1
A, Y sk I+ 1)/gcd(2 is;, | + 1)
K=o =1
B, So+ 5 + 28, 2/gcd(2, 5,)
G, 5o+ 35, + 2, 1.

(3.1)

The EFO has within its conjugacy class a unique diag-
onal representative which acts on any weight space V* of the
weight A = 2/ _ | ¢, a; of any representation of G as

v—exp(2mild,s)/ M, veV?*, (3.2)
where (4,s) is evaluated through
(@;,8)=s;, i=1,.1L (3.3)

Here a;, i = 1,2,...,] are the simple roots of G.
The character of the element s = [s,,s,---s, ] in the repre-
sentation (4,,...,4,) is denoted by (4,,...,4; ). 5,5, - Whenever

no ambiguity can arise, we omit the subscripts sgs,+-s;. The

character of s can readily be calculated® for representations
of small dimension using (3.2) and (3.3). This allows one to
calculate, for instance, the few characters of a general EFO
which occur as coefficients in the character generators. In
particular, one finds the following:

(1) — eﬂiSl/M+e—7TLS,/M= 2COS 77'S1/M
of4,,
<10> — (01>* — e21ri(2x. + 5,)/3M

4 @27 s A )M L o~ 2mils, + 25,)/3M

(3.4a)

(3.4b)
of 4,,
(100) = (001)*
— em‘(}s, + 25, + 5;)/2M + em‘( — 8 + 25, + 5;)/2M
i — 5, — 2 /2M (s, + 255 + 3 )/2IM
+ eﬂ’( s S, + 53) + e mils; + 2s; + 3s;) ,
(3.4¢)

<010> — em]s, + 25, + 5;)/4M + em'(s, + 5;)/4M _+_ eﬂils, — s:)/4M
+ e Ti(s) — s3)/4M +e — (s + 5, }/4M + e~ (s, + 25, + S;l/4M,
(200) = (002)*
= (100)2 — (010), (101) = (100)(001) — 1

of 4,

(01) =4 cos A—T; (s; + $,)cos %sz,

TABLEL List of all rational elements of finite order in the simple Lie groups of types 4,, 4,, 45, B,, and G,. The full order of each element is given in column
N. The last column contains the character-coefficients needed in the character generators. They are calculated from (3.4).

4, 4,

Rational Rational

element N (1) element N (10)

{10 1 2 [100] 1 3

[o1] 2 -2 [o11] 2 -1

[12] 3 -1 [111] 3 0

[ 4 [211] 4 1

21] 6 1 [411] 6 2

A4, B, G,

Rational Rational Rational

element N {100) element N {10) element N (10) (01)
[1000}) 1 4 [100] i 5 [100] 1 7 14
[o101] 2 0 [001] 2 -3 [o01] 2 -1 -2
[0010] 2 —4 [010] 2 5 [010] 3 -2 5
[1101] 3 1 {101] 3 -1 [101] 3 1 -1
[1020] 3 -2 [120] 3 2 [201] 4 3 2
{1010] 4 0 [110] 4 1 [110] 4 -1 2
[2101] 4 2 [201] 4 1 [401] 6 5 7
[0121] 4 —2 [021] 4 1 [310] 6 2 1
[1121] 5 -1 [121] 5 0 (111} 6 -1 1
[o11] 6 -1 [o11] 6 -1 [211] 7 0 0
[2010] 6 2 [210] 6 2 [311] 8 1 0
[4101] 6 3 [401] 6 3 [112] 8 -1 0
[2121) 6 0 [221] 6 0 [313] 12 0 -1
[0141] 6 -3 [041] 6 3 [114] 12 —1 -1
[111] 8 0 [111] 8 -1

[2111] 10 1 [211] 10 0

[1212] 12 0 [112] 12 —2

[6141] 12 1 [641] 12 1

[4161] 12 -1 [461] 12 1
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(10) =1 + 4 cos = (s, + 2s,)cos s, 3.4
) M( 1 Z)COSMSI (3.4d)

(02) = (01)2—(10) — 1
of B,,

2ms 27
10) =1+2cos—L +2cos=— (s
(10) + JY; M(1+52)

2
+ 2 cos — (25, + 5,),
M( 1+ 52)

27 2r
{01) =1+ (10) + 2 cos ﬁsz + ZCosﬁ(iis, + 5,)

2
+ 2 cos — (35, + 2s.,),
M( 1 2)

(20) = (10)* — (01) — (10) — 1,

(11) = (10)(01) — (20) — (10},

(30) = (10)(20) — (11) — (10) — (20) — (01},

{02) = (01)% — (30) — (20) — (01) — 1,
of G,.

Upon substitution of the character-coefficients of (3.4)
into the character generators of Sec. 2, one gets the genera-
tors of characters of EFO in irreducible representations of
the corresponding Lie groups. There is a wealth of informa-

tion contained in these generators, as exemplified in the last
section.

(3.4e)

4. CHARACTER GENERATORS FOR RATIONAL
ELEMENTS

Among the infinity of EFO in G, a particularly interest-
ing finite subset are the rational elements. An element
[505,-+5;] in G is called rational if all its characters
(A..4,),.s are rational. (Since these character values are
algebraic integers they are, in fact, integers.) It follows that
the character generator for a rational element must have all
coefficients integer in its numerator and denominator.
Equivalently, its character values in (3.4) must be integers.

The rational EFO in the five groups considered here
were found in Ref. 5. They are reproduced in Table I togeth-
er with the characters required as coefficients for the charac-
ter generators. Let us consider each of the five groups separa-
tely.

The 4,-character generator, Eq. (2.1), contains the coef-
ficient (1)3‘ s, only. For all rational elements of 4, these are
shown in Table I. The character generators for 4,-rational
elements are given in Table II. Let us point out the last three
of them, corresponding to [12], [11], and [21]. They can be
rewritten, respectively, as (1 — 4)/(1 —A43), (1 —4?)/

TABLE III. Character generators for rational elements of 4,.

TABLE II. Character generators for rational elements of 4,.

Rational Character Distinct character
element generator values

{10} (1—-4)2 infinitely many
[01) (14+4)2 infinitely many
[12] (1+4+497" +1,0

[11] (14+43! +1,0

[21] (1l—A+43"! +14,0

(1—-A4%,and (1 + 4){1 — 43/(1 — 4%, which makes ob-
vious the well-known fact (of Refs. 1 and 3) that all char-
acters of these elements take only three values: + 1 and 0.

The A,-character generator, Eq. (2.2), requires two co-
efficients (10),,,, and (O1), . , which are complex conju-
gate, in general, and therefore equal for the rational ele-
ments. Their values are shown in Table I for all rational
elements of 4,. Due to the natural inclusion 4, O 4, speci-
fied in terms of representations as {10) D (1) + (0), and the
one-to-one correspondence between the rational elements of
A,, and 4,, , established in Ref. 5, one has

(10) = (1) + 1, (4.1)

as demonstrated by the corresponding entries in Table 1.
Table III contains the character generators for rational ele-
ments of 4,. As in the previous case, one finds from the
character generators of the regular elements [111], [211],
and [411] of 4, that the characters (1,4,),,,, (4,4,)2.1, and
(A4,4,) 41, take only finitely many distinct values on all irre-
ducible representations of 4,. Indeed, expanding the gener-
ator, one finds that

(Adz) = +1or0, (AhA2)zy = £ 1lor0 (4.2)
in agreement with Refs. 1 and 3, but also

Ad)an= 13, +2, +1,0r0. (4.3)

The A,-character generator, Eq. (2.3), contains six char-
acter-coefficients. However, due to the relations (3.4}, only
two of them are independent on rational (actually, real) ele-
ments, say, (100), . and (010}, . . The 19 rational ele-

ments 4, are in one-to-one correspondence with the 19 ra-
tional elements of B, given by’

[50515281 [<>[50525,]. (4.4)

Due to the inclusion B, C 4, and the reductions (100) D(01)
and (010) D(10) + (00) of the representations of their B,-con-
tent, one has the equality of characters of rational elements
of 4, and B,:

Rational Character Distinct character
element generator values

[100] (1—PQ)(1—PP1—Q)P infinitely many
[o11] (1 —PQ)/(1 — PY(1 + P)1 — Q31 + Q) infinitely many
[1i1] (1—-PR)/(1—P)1—Q? +1,0

[211] (1—PQ)1 + P)1 + Q)/(1 -~ P*)1l — QF) +1,0

[411] (1—PQ)1+P)1+ Q)1 +P+PH1+Q+ Q3/(1-P%1—Q9 +3,+2,+1,0
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TABLE1V. Character generators of rational elements of finite order in A,. Notations: 2 = 1 — AC + A2B + BC?> — AB*C+ A’B>C*and @ = 4B + BC

+A*B*C+ ABC™

Distinct
Rational Character character
element generator values
[1000] {(1+ B)f2 +64BC)—4® /(1 — A1 - B)(1 — C)* infinitely many

[0101] {2 — 24BC | /(1 — A1 — B4(1 — C?? infinitely many
[0010] {(1 + B} + 64BC) +4® }/(1 + A1 — BY*(1 + C)* infinitely many
[1101] {1 +B2—®}/(1—A)1 —AY1+ B+ BY1— BN —C)1 - C? infinitely many
[1020] {(1 + B)(2 + 34BC) +2®)/(1 + 4 + A?1 — B(1 — B*(1 + C+ C?? infinitely many
(1010} (12 + 24BC}/(1 + A1 — BY(1 —~ BY(1 + C?? infinitely many
[2101] {(1 +B)Y2+24BC)—2® /(1 — A1 + A}(1 — B)(1 + B}(1 — C¥{1 + CY infinitely many
[0121) {(1 + BY2 + 24BC) +2® /(1 + A (1 + A%1 — B)(1 + BY(1 + CP(1 + C? infinitely many
[1121] {(1+B)(2+ABC)+®}{1— A1 = C)/(1 — 451 — B —CY) +1,0

[o111) {(1+B2+@}/1+A4)1+4°1+B+B3)1—B}1+C)1+C? infinitely many
[2010] {14 B)(2+34BC)— 20 }/(1 — A+ A1 — B{1 —B*1 — C+ C? infinitely many
[4101] {(1+B)2 +44BC)~3®}/(1 —AP(1 —A+ A1 —B)1—B+BY1—CP1—C+C? infinitely many
[2121] {2+ ABC}(1 - A1 —CH 1+ B+ BY/(1 —4%1 - B1 —CH +1,0

[0141] {(1 +BY2 +44BC+38)}/(1 +AP(1 + A+ A} 1 —B)Y1 —B+ B+ CP1 +C+C? infinitely many
[1111] 2/1+A%1—BY1+CH +1,0

[2111] {(1 +BY2 +ABC)— @ }(1 + A)(1 + C)/(1 + 4%(1 — BS1 + C3) ¥1,0

[1212) {2 —ABCY{1+ A1+ CH1—B+BH/(1+A4%1—B°1+C +1,0

[6141] {(14+B)$2 +24BC) — ®}(1 — A2+ A4(1 + A)(1 — A)Z>_,B)1 + B $4,+3,+2,+1,0

X(1—CI 4+ CHY1+CY1 = CH/(1 —4')(1 — B —C"
[4161] {(14+B)42+24BC)+ ®}(1 — A2+ A4(1 — A)1 + A°)(Z3_,B)1 + BY +4,+3, 42,41, 0
X(1—C24+CH1~CYl + CH(1 — A1 — B'31 —C?
(100}, ., =(O1), .., (4.5) The G,-character generator, Eq. (2.5), contains the coef-
(010) = (10) +1 (4.6) ficients (10),, . and (O1) . given in Table L. The genera-
S0%1525) SoS25) . .

In Table I we have shown only one of the two equal char-
acters of rational elements. The character generators of all
19 rational EFO of 4, are given in Table IV.

The B,-character generator, Eq. (2.4), contains two in-
dependent coefficients: (10), . and {(01), . . The first one
is given in Table I, the second is found from (4.5) in the 4,
part of Table I. All 19 character generators for rational ele-
ments of B, are given in Table V.

TABLE V. Character generators for rational elements of B,.

tors for characters of rational elements of finite order in G,
are given in Table VL.

The last columns in Tables II-VI contain the character
values for a given element whenever their number is finite.
One notices that the set of distinct character values is finite
precisely for the regular EFO in any simple Lie group.” It
was shown in Ref. 3 that the set of character values of nonre-
gular EFO is unbounded. Let us be reminded here that an
EFO is regular iff its centralizer in the Lie group is of mini-

Rational Character Distinct character
element generator values

{100] {(1+B)1+A4?B)—44B}/(1 — A1 — B)* infinitely many
[001] (1+A4°B)/(1-4Y1+B) infinitely many
[o10] {(1+B)1+A42B)+44B)/(1 +4)*(1 — B)* infinitely many
[101] {(1+B)1+A4B)—AB}/(1—A4)1—A4%(1+B+ B infinitely many
{120] {(1+B)1+A?B)+24B}/(1 + A + A1 — B?(1 — B) infinitely many
[110] {1+ B)1+A4°B)/{(1 + A%*1 — BY? infinitely many
[201] {14+ B)1+A4°B)—24B}/(1 + 4}(1 — 41 + B} infinitely many
[021] {(1+B)1+A4B)+24B}/(1 ~AY)1 + A1 + B?? infinitely many
[121] {1+ B)1+A42B)+AB}{1 —A)1 —B)/(1 —A4°(1 — BY) +1,0

fo11] {(1+B)1+A4%B)+AB}/(1+4)1 +4%1+ B+ B infinitely many
[210] {{1+B)14+4?B)—24B}/(1 ~ 4+ A%H1 + B+ B¥(1 — B)? infinitely many
[401] {(1+B){1+A’B)—34B}/(1 —~ A1 —A+ 431 —~ B+ B?¥? infinitely many
{221} (1—AY)(1+A42BY/(1 —A%1 + B?) +1,0

[041] {(1+B)1+A4°B)+34B}/(1 + A1 + A+ A1 ~B+ B¥? infinitely many
[111} (1+A4%B)1—B)/(1 + 4%(1 — BY +1,0

[211] {(1+B)}1+A4°B)—AB}{1 +A4)1 —B)/(1+ 41 —B%) +1,0

[112]) (1—B)1+A%B)1+431—~B+B*/(1+A4%1—BY +2,+1,0
[641] {(1+B)(l+A2B)—AB](1+Bz)(l+A)(1—A3)(1—A2+A“)/(1—A'2)(1+EG) +2,+1,0
[461] [(1+B)(1+AZB)+AB](1+Bz)(l-—A)(1+A3)(1—A2+A‘)/(l—A“)(1+B6) +2,+1,0
2391 J. Math. Phys., Vol. 24, No. 10, October 1983
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TABLE VI. Character generators of rational elements of finite order in G,.

Distinct
Rational Character character
element generator values
[100] {1+A+8B—264B+ 8B+ 154°B —414B* + B> — 64°B + 784°B*> — 6AB> + A*B — 414°B* infinitely
+154?B* + 8A*B? — 264°B* + 84*B> + A®B* + A*B*}/(1 —A)(1 - B)® many
[oo1] {1l+A4—24B— A*B—AB*> + B> + 24°B —24°B* + 24B° + A*B —~ A°B> —A’B* _24°B*+ A°B* + A*B*}/ infinitely
(14421 —A4%(1+ Byl —B¥ many
[010] {1+4A—B+AB— B>+ 64*B—54B> + B>+ 34°B —44°B* + AB> + A*B — 54°B> 4+ 64°B* — 4°B* infinitely
+AB—~A‘B>+ A*B* + A°B*}/(1+ A+ A%l —B)° many
[101] {1+A4+2B+AB+2B* + AB> + B> + A*B+ A°B* + 24*°B* + A°B> + 24*B> + A°B* + A*B*}/ infinitely
1—A»1+B+B? many
[201] {1+A4+4B—24B+4B> +34°B— AB*> 4+ B> —24°B+ 64°B*> —24B* + A*B — 54 °B* infinitely
+342B% +44°B* —24°B* 4+ 44*B> + A’B* + A*B*}/(1 + AP (1 —A(1 + B)}{1 + B many
[110] {1+A4+24B+34°B—~AB*> + B* + 24°B - 24°B* 4 24B° + A*B— A’B* + 34°B* +24°B* + A°B* + A*B*}/ infinitely
(1+ A1+ 451 +BY)(1 —B) many
[401] {1+A4+6B—114B + 68>+ 84°B + 194B> + B® —44°B + 284°B? —44B> + A*B — 194°B* infinitely
+84°B*+ 64°B>—114°B> + 64°B> + A°B* + A*B*}|/(1 — A+ A} (1 —4){1 + B*+ BY(1 — B+ B? many
(310] {l+A+3B+AB+3B*>+24°B—AB* 4+ B> —A°B+ 44°B* + A°B—A°B* 4 24°B* infinitely
+34*B* 4+ A°B> + 34*B> + A°B* + A'BY /(1 —A+ A1 + A+ 471 - Bl + BV many
[ {l—A+B—A*B+A4°B*~A*B*}(1 - BY/(1 —A4°(1 — BS) +1,0
{211] {1—A4>+AB— AB*+ A’B*—B*—A°B+ A°B*—A4°B* + A°B* - A°B> + A°B°}/(1—4")(1 — B") +1,0
[311] {(1+4—B>—AB?>+A*B—A’B* + A*B—A*B* + 4°B> — A B*}(1 —A?)(1 + B})/(1 — 4*(1 — B¥) +1,0
[112] {1+A°B+A°B+ B>+ AB* —A’B*—AB*+ A°B*}(1 —A)1+4%(1 —B*/(1—4%(1 - B¥ +1,0
[313] (1—4%1+A4%1-B)}1+A4°B)/(1—4"1 —B*) +1,0
[114] {1l —AB+A°B+ A°B—AB? —~A’B*> + B® + AB* _4’B*>+ A°B*}(1 —A4)1 —B+BY)(1+B*/(1 —A4%(1+B") +2,+1,0




mal dimension, i.e., the rank. This is equivalent to the condi-
tions; >0foralli=0,..,/

5. GAUSSIAN ELEMENTS OF FINITE ORDER

The rational EFO considered in Sec. 4 are undoubtedly
the most convenient EFO to work with in many cases be-
cause of their integer characters. However, for groups with
complex-valued characters of EFO, i.e., 4,,n>1,D 4 , 4,
k> 1, and E,, the rational elements have a drawback: they
take the same character values on pairs of contragredient
representations. That alone is a motivation to study nonra-
tional and/or nonreal EFO.

Next simplest EFO are those whose characters take val-
ues from a quadratic number field. Such a character can be
written as an integer linear combination of two basis ele-

ments, one of them being 1, and the second containing yp or

J — p, where p is a square free integer. Here we are con-
cerned with the simplest case: the Gaussian numbers a + b
with a,b integer.

Among the five simple groups considered in this paper
only 4, and 4; have complex-valued characters. The num-
ber of conjugacy classes of Gaussian EFO {more generally
any EFO of a given quadratic type) is finite in any simple Lie
group.® In 4, and 4, these are shown in Tables VII and VIII
together with the relevant character coefficients. We call
EFO Gaussian if its characters are found in the Gaussian
field and not in its subfield, i.e., rational EFO are not called
Gaussian.

The fact that Tables VII and VIII contain all Gaussian
EFO in A4, and A, requires a proof. A simple one can be
given, for instance, in the following way. In Ref. 5 it was
proven that order N of Gaussian EFO satisfies N =0
{mod 4) in any Lie group, and that upper limit ¥, for ¥

max

TABLE VII All conjugacy classes of Gaussian EFO in A, and the charac-
ter coefficients relevant for (3.4).

Gaussian element N {01)
[130] 4 — 142
[103] 4 —~1-2i
[341] 8 i
[314] 8 —1i
{174} 12 — 14
{147} 12 —1—i

equals 12 and 20, respectively, for A, and 4,. Hence it suf-
fices to compute the character coefficients for all EFO with
N<N,,,, inorder to decide which of them are Gaussian. The
list of EFO is readily compiled using (3.1) and the character
coefficients are calculated from (3.4b) and (3.4c).

The Gaussian EFO of Table VII are divided into pairs
with complex conjugate characters (01). It follows from
(2.2) that the two EFO of each pair have complex conjugate
characters on any representation of 4,. Consequently, it suf-
fices to calculate the character generator for one EFO of the
pair, say the first one, and to find the other by complex con-
jugation. Substitution of (01) into (2.2) and obvious simplifi-
cations give the following character generators:

[130}: 1= PO — (5.1)
T+ PN PP+ Q)1 —iQ)

pa — — 1-FQ . 52
(1 +iP)1+iP )(l—lQ)(I — Q7

[174]: 1— PO

(1+P)1+iP—PH1+ Q)1 —iQ—QT)5'3

TABLE VIII. All conjugacy classes of Gaussian EFQ in A ,. The last four columns provide information about the character generators as explained in Sec. 5.

Gaussian Related Phase factor
element N (100) {010) EFO A B C
foo01] 4 4i -6 [1000] i —1 —1i
[0100] 4 — 4 —6 —i —1 i
{1012] 4 2i ~2 [o121] —i —1 i
[1210] 4 -2 -2 i -1 —i
[3113] 8 1+ 0 §3113] 1 1 1
{1133] 8 ~ 14 0 i —1 -1
[3311] 8 1—i 0 —i —1 i
[1331] 8 —1—i 0 -1 i —1
[1410) 12 —3i —4 [4101] —i —1 i
{1014] 12 3 —4 i —1 -
[0201} 12 —2i -3 [1020] i —1 —1i
[0102]) 12 2i -3 —i —1 i
[1011] 12 i 0 [1101] i -1 —1i
[1110]) 12 —i 0 —1i —1 i
[1416] 12 i -2 [6141] i -1 —i
[1614] 12 —i —2 —i -1 i
[1211] 20 — —1 [1121] i —1 —i
[1112] 20 i —1 —i —1 i
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The last two EFO are regular; hence they have only finitely many distinct character values. This becomes obvious if the
character generators are rewritten in an equivalent form:

(L= PQ)1 —iPY1 — iP?)1 — P31 + Q)1 +iQ?)(1 — Q?) ,
341]: , 5.2
141 (1= P -0 2
(174 (LZPQUL—PYL4 PO+ P2 4 PYL—iP— P Q1 + Q71+ @+ QNI +iQ =07 53,

(1-P2)1-0"
The distinct character values are then found as coeflicients of the numerators in (5.2') and (5.3') which have been multiplied
out. Thus the characters of [341] take nine distinct values: 0, + 1, + i, + 1 4/, and those of [174] take 17 values:
0, +1, +2, +3, +2i, + 1+ +1+2i

The first two columns of Table VIII contain similar information about Gaussian EFO in 4. The fifth column of the table
indicates an EFO related by permutation of the labels s; of the nodes of the extended Coxeter—-Dynkin diagram. In all but one
case the related EFO is a rational one and its character generator is therefore found in Table IV. Only for [3113] the character
generator has to be newly calculated from (2.3); it is
[3113]: {1 ~B32 — (1 —B*)® +i(l + B)AB—BC+ AB*C* — 4°B*C)}

X(1+AN1+id)1+id3)(1 —BH)1 4+ C)1 —iC)1 —iC3H/(1 —A8)(1 —BY(1 —C?), (5.4)
where (2 and @ are the same as in Table IV.

Then the character generators of a Gaussian element are obtained from that of the EFO of the fifth column by multiply-
ing its variables 4, B, and C by the phase factors shown in columns 6, 7, and 8, respectively. Thus, for instance, from the
character generator of the identity EFO [1000] of Table IV one obtains by the substitution 4—i4, B— — B, C— — iC the
character generator for the Gaussian element [0001]:

{(1—B)1—AC+A>B+ BC?— AB>C + A’B*C?) + 4i{AB— BC — A’B’C + AB*C?)] (5.5)

(1 —id Y1+ B)(1 +iC)* ' '
Consequently the characters of the element [0001] have absolute value equal to the dimension of the 4 ,-representation, and
phase equal to one of the fourth roots of 1. The same obviously holds for the characters of the Gaussian element [0100}. Also,

let us point out that the center of the group A, consists of the elements [1000], [0100], [0010], and [0001].

In Table VIII there are eight EFO which are regular.
These elements have only finitely many distinct character
values in irreducible representations of 4;. Multiplying out
the numerators of the corresponding character generators,
one finds the values each character can take. Namely, the
following:

[3113],[1331L,[3311],[11331:0, + 1, £ 1 44, + 2, + 24,

[1614],[1416]:0, + 1, £ i, + 2, + 2, + 3, + 3i, + 4, + 4/,
[12113,[1112]: 0, + 1, + 4. (5.6)

6. COMMENTS AND EXAMPLES

Let us first point out some of the general properties of
EFO on examples of EFO in the five simple Lie groups here.
The character generators make them particularly visible.

(1) EFO with only real character values. Clearly, in or-
der that all characters of a given EFO are real, it is necessary
and sufficient that the character-coefficients of the character
generators are real. That is the case for all EFOin 4,, B,, and
G,. Itis also true for precisely those EFO of 4, and 45, which
are given by [so5,5,] and [s05,5,5,], respectively. More gener-
ally, one concludes that all characters of an element
[so5,-+5,] € G take their values from the same (cyclotomic)
number field as do the corresponding character-coefficients.

(2) In order that [sos,--s,] is a real EFO in a simple Lie
group G, it is necessary and sufficient’ that (s,s,---s;) denotes
a selfcontragredient representation of the group G.

(3) There is a one-to-one correspondence between the
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|
real EFO of 4, and 4, given by

[s0815, J>[50,25,1/gcd(s0,254) (6.1)

and between the real EFO of 4, and B, given by (4.4), or,
more generally, between the real elements of 4,, |, and
those of C,, (Ref. 5):

[S05 18w =S ] [S05 15 |- (6.2)

(4) All 19 rational elements of A, can be found from
those of A, by means of the correspondence with the rational
EFO’s of A;:

[505185281 1> [50,5 1,5 52,4 52,5,]  if s, is even, (6.3)

or
[50515251]«>1250:251582,82,25,]  if s, is odd. (6.4)
(5) Among the 59 rational elements of 45 (they were

found in Ref. 5), 19 can be simply found because of the corre-
spondence between the rational EFO’s of 4, and 45:

[s05152528 11> 156515,05254]. (6.5)

(6) Consider a pair of simple Lie groups G O G’, and a
pair s and s’ of EFO such that s € G and s’ € G’ and s<s’
through one of the relations (6.1)—(6.5). Then from the reduc-
tionA D A’ of representations A of G toA ' of G’ follows the
equality of characters

(A)s =" (6.6)

The reduction for most cases of interest is found, for in-
stance, in Ref. 14. Examples are, for instance, Egs. (4.1) and
(4.4)-(4.6).
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TABLE IX. Nonzero characters of the two regular Gaussian EFO of 4,. At the intersection of pth column and gth row is the character of the EFOin the 4,

representation (p,g) (mod N ), where N = 8 for [341] and N = 12 for [174].

[341]

P 0 1 2 3 4 5 6

q

0 1 —i —=1—=i —14i i 1

1 i 1 —i —1

2 - 141 1 1 —-1—=i i —i

3 —1- — 1417 T+ 1—i

4 —i i 1—i —1 -1 1+

5 1 —1i —1 i

6 —1 i 14§ 1—i —i =1

[174]

4 0 1 2 3 4 5 6 7 8 9 10
X

0 1 —1—i 1414 —-1-=2i 2i -2 —-142 1—14 — 141 1

1 — 1+ 1 — 147 2 -1 2 —1—i 1 —1—i -1
2 1—i —1—i — 19 — 1+ —141i 14+ 144 1-—i
3 — 142 2 —1+4i 3 — 1 2 —1-=2 —1—=i -1 - 141
4 -2 -1 —1—i — 14 -1 2i 142 1—1i 1414 1-2i
5 2i 2 2 —2i —2 -2 -2 2i
6 —1-2 -1+ —1—i — 142 2i 1 14§ 1—i 1 —2i
7 1+ 1 1—i 1-2 -2 1—i -3 I+ -2 1+ 2
8 —-1—i — 1+ — 14 1414 14+ 114 1—4 —-1—i
9 1 1—i -1 1—i -2 1 -2 1+i -1 14
10 -1 1+1 —1—i 142 — 2 2i 1—-2i — 14 1—i —1

(7) One of the obvious applications of characters of
EFO’s is the decomposition of tensor products of representa-
tions of the corresponding Lie group. Namely, given the ten-
sor product

$8¢,= iSJ é;

of representations ¢ of G, one has the corresponding equality
of characters

EYXGED) = 3 (s,

i=3

(6.7)

(6.8)

where (s') is the character of an element s € G on the repre-
sentation ¢, of G.

(8) Let us consider the element [10---0] in a simple Lie
group G. It is the element of order N = M = 1, i.e., the iden-
tity element of the group. Consequently, its character in ev-
ery representation of the group is equal to the dimension of
the representation of G. The character generator corre-
sponding to it is the generator of dimensions® of representa-
tions of G. In particular, let G be the exceptional simple Lie
group of type G,. The character generator of the element
[100] is found in Table VI. The first terms of the power
expansion are

1474 + 14B + 64A4B + ---. (6.9)
The coefficient of a power 4° B® is the dimension of the irre-
ducible representation (ab ) of G,.

(9) As the next example consider the two Gaussian EFO
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in 4, which are regular. Their character generators are given
by (5.2)and (5.3), and also by (5.2') and (5.3'). Multiplying out
the numerators of (5.2) and (5.3') one finds the character
values in all 4, representations ( p,g) with p < N and g < N,
i.e., N =8 for [341] and N = 12 for [174]. Comparing the
degrees of the numerators and denominators one readily
concludes that { p,g) = (p',¢') forp=p'andqg=¢'

(mod N ). Therefore Table IX contains the characters for a//
representations of 4.

{10) The conjugacy classes determined by [11.--1] and
[21---1] in the adjoint group are the unique classes of regular
EFOoforder N=hand N =k + 1, respectively, where A is
the Coxeter number of the Lie group G. In Ref. 3 it was
shown that their characters are zero on an irreducible repre-
sentation A iff 2(4 + p,a)/(a,a) = 0 (mod N) for a root a.
Here p denotes the half-sum of all positive roots of G.

(11) Consider the example of the EFO [1ss] in 4,. The
element is real because s, = s, and, in general, it is not ration-
al. For s > Oitis regular so that its characters take only finite-
ly many distinct values in irreducible representations of 4,.
One has

(10) Iss — <01>1ss (6'10)
for all s. The character coefficient (10),, is given in (3.4b). It

1S
(10),,, = 1 + 2 cos2ms/(2s + 1). (6.11)

Fors = Oor 1 itis integer. Consequently, the elements [100]

and [111] are rational. If, however, s > 1, say s = 2, one has
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(10) 22 = J(1 — 5)=r. (6.12)
It follows immediately that every character {(4,4,),, is of

the form a + b+/5 with a and b integer or half-odd. More-
over, the character generator can be brought to the form
(1—PQ)1+7P+P)1+7Q0+ Q2

(1—P)1 - Q7 ’
from which it is clear that (4,4,),,, can take only one of the
following values: 0, + 1, 4+ 7.

(12) The character generators for some of the elements,
forinstance[11]inA4,,[011]in4,, or [1010] and [1001}in A4,
can be interpreted as generators of signatures of representa-
tions of the noncompact real forms SU(1,1), SU(2,1), or
SU(2,2) and SU(3,1) of the corresponding groups. An inde-
pendent computation of these signatures can be found in
Ref. 15.

(13) Finite subgroups of Lie groups are of considerable
interest in mathematics and, in a different way, also in phys-
ics. By definition, any finite group F consists of EFO. If one
has F C G, where G is a Lie group, it should be possible to
identify elements of F with certain elements of G. However,
here we have studied only G-conjugacy classes of EFO;
therefore only the G-conjugates of elements of F can be iden-
tified in our description (for instance, by the values of their
characters in sufficiently many representations of G ). To
construct actual nonabelian finite subgroups of Lie groups is
a problem which has no known general solution in math-
ematics, although simple particular cases can undoubtedly
be solved.
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It is shown that the finite- and infinite-dimensional irreducible representations ( ji, ¢) of the proper
Lorentz group SO(3,1) may be classified into the two categories, namely, the complex-orthogonal
and the symplectic representations; while all the integral-j, representations are equivalent to
complex-orthogonal ones, the remaining representations for which j, is a half-odd integer are
symplectic in nature. This implies in particular that all the representations belonging to the
complementary series and the subclass of integral-j, representations belonging to the principal
series are equivalent to real-orthogonal representations. The rest of the principal series of
representations for which j, is a half-odd integer are symplectic in addition to being unitary and
this in turn implies that the D / representation of SO(3) with half-odd integral j is a subgroup

of the unitary symplectic group USp(2 j + 1). The infinitesimal operators for the integral-j,
representations are constructed in a suitable basis wherein these are seen to be complex skew-
symmetric in general and real skew-symmetric in particular for the unitary representations,
exhibiting explicitly the aforementioned properties of the integral-j, representations. Also, by
introducing a suitable real basis, the finite-dimensional ( j, = 0, ¢ = n) representations, where 7 is
an integer, are shown to be real-pseudo-orthogonal with the signature (n(n + 1)/2, n(n — 1)/2). In
any general complex basis, these representations (0, #) are also shown to be pseudo-unitary with
the same signature (n(n + 1)/2, n(n — 1)/2). Further it is shown that no other finite-dimensional

Special properties of the irreducible representations of the proper Lorentz
group

irreducible representation of SO(3,1) possesses either of these two special properties.

PACS numbers: 02.20.Qs, 02.20.Rt

I. INTRODUCTION

It is well known that the self-representation D ¥ of the
proper Lorentz group SO(3,1) is complex orthogonal in Min-
kowski coordinates with x*=icz. One also knows'?? that
S0O(3,C) is isomorphic to SO(3,1), which means that the re-
presentations D °' and D '° are also equivalent to complex-
orthogonal representations. In other words, the representa-
tion matrices (D ) of the irreducible representations D ¥, D °!,
and D ' of SO(3,1) are known to satisfy the relation

DD=DD=E, (1.1)

in some suitable basis, where D is the transpose of D and E is
a unit matrix of the appropriate dimension. On the other
hand, if D is a complex unimodular matrix of two dimen-
sions belonging to the group SL(2,C) which provides the
D (orD %) representation of SO(3,1), we also have the simi-
lar result® that

f)GD:G:(_Ol (1)) (1.2)

This simply means that the SL(2,C ) representation of SO(3,1)
is symplectic (see any one of the Refs. 4-8 for the definition of
the symplectic groups).

In a notation®'! that is most convenient for describing
both the finite- and infinite-dimensional representations of
SO(3,1), where each irreducible representation is character-
ized by an index pair ( j,, ¢), where j, is a positive integer or a
half-odd integer and c is an arbitrary complex number, the
above-mentioned results would mean that the self-represen-
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tation (0,2) and the representations (1,2) and (1, — 2) of
SO(3,1) are equivalent to complex-orthogonal ones whereas
the representations (1, §) and (4, — 3) are symplectic.

In this paper we show that all the representations ( j, c)
of SO (3,1), both finite- and infinite-dimensional, are equiva-
lent either to symplectic or to complex-orthogonal representa-
tions.

In the rest of this section, we give a very brief descrip-
tion of the irreducible representations ( j,, ¢} of SO(3,1) for
the sake of completeness and to fix the notation followed in
this paper. The carrier space B { j, ¢} of the irreducible repre-
sentation ( ji,, ¢) of the proper Lorentz group is characterized
by the nonnegative integral or half-odd-integral number j;
and may be analyzed®™'' as the direct sum of a sequence of
finite-dimensional subspaces M;. The positive number j des-
ignating the subspace M, is called its weight and is also either
integral or half-odd-integral with ji,. Each of these M; is in-
variant with respect to the irreducible representation D / of
the subgroup of rotations and occurs exactly once in the
decomposition of B ( ji, ¢) into a direct sum of subspaces so
that

B{jyc)= juj,, 'H”jo+ 1 +]WJ

yia o (1.3)
where j, is the smallest of the weights participating in the
irreducible representation { j,, ¢). If ( j,, c) is finite-dimension-
al, then the above sequence terminates at some maximum
weight j = j, + n, n = 1,2,3,... . Otherwise, this sequence is
nonterminating. If {£,, } is a (canonical) basis in M; with
{2/ + 1) basis vecotrs corresponding to m = —j,

—Jj+ 1,...,j — 1,j, then the whole space B { ji, c) is spanned
by the set of all vectors § ; ., wherej = jo, jo + 1, /o + 2, ...,
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andm= —j, —j+1,..,j—
basis as the £-basis in B (j,, ).

The six basic infinitesimal generators of a representa-
tion of SO(3,1) satisfy the commutation relations

[Ae Ais)] = — [Bay Big)] = €apdiys

1, j, and we shall refer to this

(1.4)

(4> Bigy] = €apy By

where the Greek suffixes @, 5, y range over 1, 2, 3, and €,, 4, is
the usual antisymmetric permutation symbol. The operators
A=A, (@, B, ¥ cyclic) correspond to spatial rotations in
the x °~x” plane and the B, =B, 4 correspond to boosts in
the x°—x* plane of the Minkowski space—time spanned by
coordinates x'=x, x>=y, x>=z, and x*=ct. The general so-
lution of Eqs. (1.4), corresponding to an irreducible represen-
tation ( j,, c), where j, is a positive integral of half-odd-inte-
gral number and c is an arbitrary complex number as already
mentioned, is given in the canonical £-basis {£;,,, } by the
formulas® '

Hi §j,m = {(]im + 1)(j$m)}”2§j,mi1’
(1.5)

Hf; o =mg ).,

Foéim= 2 {UFm=0JFm}'’C&, s
—{Jxm+ ) iFm}'P4¢,,, .,
+{j+m+0)Em+217°C 1€ i

(1.6)
Ffm={U—mj+m}'?CE;_\,, —mAE,,,
~{J+m+0)j—m+1}'?C &y s
where
A =ije/ i+ 1), Ae=ic, (1.7)
i [\ =il — 62)}”2
DL TR T 7Y ¢, =0, ,
ay [ 47 —1 ° (1.8
H, =(id, FAy) Hy=id,, (1.9)
and
F, =(iB,, FBy), Fy=iBy. (1.10)

If the numbers j, and ¢ characterizing the irreducible repre-
sentation ( j,, ¢} are not simultaneously integral or half-odd-
integral, then ( j,, c) is infinite-dimensional, and the indices j
and m take all the values in the ranges
m=—j, —j+1,.,j—1],
j=j0’j0 + 1,_;'0 +2,...
If however, ¢* = { j, + n)’ for some positive integer n, so that
Jo and ¢ are simultaneously integral or half-odd-integral,
then the representation ( j,, ¢} is finite-dimensional with m
and j taking the run of values

(1.11)

m = _j9 _j+ 1’ ’J_ l;j9

J=Jvdot Ljo+2 .., |Cl — L
The dimension of such a finite-dimensional representation is
given by the formula

(1.12)

dim(jo, ¢) = ¢ — jo = n(2jo + n). (1.13)
The irreducible representation { ji, c) is unitary if either
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¢ is purely imaginary and j, is an arbitrary non-negative

integral or half-odd-integral number (1.14a)
or

c is a real number in the interval 0 < |¢|<1 and

jo=0. (1.14b)

The unitary irreducible representations corresponding
to the Eq. {1.14a) are called the principal series of representa-
tions and those corresponding to Eq. (1.14b) are called the
complementary series of representations. The representa-
tions characterized by (0, c)and (0, — c) are equivalent. With
the exception of the trivial one-dimensional representation
(0,1) all the unitary representations are of infinite dimension.

IIl. THE NATURE OF THE IRREDUCIBLE
REPRESENTATION (o, ©)

Let D =D { j,, ¢)be amatrix belonging to the irreducible
representation { ji,, ¢}. We now proceed to prove that every D
satisfies the relation

DGD =G, (2.1)
for an appropriate “metric matrix” G, or equivalently that
IG + GI =0, (2.2)

where 7 is the infinitesimal transformation corresponding to
D in the sense that D = exp(l ). Since every such / may be
expressed as a linear combination of 4, and B,,), it is suffi-
cient for this purpose to show that 4,, and B, and hence
their linear combinations F’s and H’s given by Eqgs. (1.5}~
(1.10) satisfy Eq. (2.2) with some specified G. The matrix
elements in the £-basis corresponding to the operators H .,
H _, etc., may be easily identified from the relations (1.5) and
{1.6), and we obtain

H_(j,m"j,m)=alj, Fm)b; O ma1s (2.3a)
Hy(j,m';j,m)=mb; 6, ., (2.3b)
F, (Jsm'sjym) =08 s {+ qb - m)éj’,jf 1
— A4;alj, Fmb;; £C; b(j, £m+ 2)6j’,j+ 1)
(2.4a)
Fi(j, m'; j, m)
=8 m {Cik (J, m)B; ;_\ — mA;6;
_q+1k(j+1’m)5j',j+l}’ (2.4b)

where we have introduced the notation

alj, m={(j + mj(j —m + D}'"*=a(j, 1 —m),

bijym={(j+m)j+m—1}"=b(j+1,m—1
=b(j+2,m—2) etc, (2.5)
k (j, m={(j + m)(j —m)}'"? = k(j, —m).
It may be observed that the rows and columns of the matri-
ces H,, H_, etc., are labeled by pairs of indices so that, for
example, H; (j', m’; j, m) is the element of the matrix H,
occurring in the (', m')th row and the (j, m)th column.'!
Further, in each pair ( j, m), the second index m takes the run
of values —j, —j + 1,...,j — 1,/. Denoting similarly the
matrix elements of Gin the £-basis as G ( j', m'; j, m) and using
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it in Eq. (2.2) with I = H,, we get
(m' +m)G(j, m’;j,m)=0, (2.6)
which shows that all elements of G with m’'# — m must
vanish so that
G(j,mjm)=08, _nGlJ,m'j, —m)
=0 G(j, —m;j,m).
To determine the coefficients of 8, _ ,, above, we use the

remaining operators H , , F;, etc., in Eq. (2.2). In doing so, we
may observe that it is sufficient to determine

(2.7)

m,—m

|

G(j,m'’;j, —m')forall ;' initsrange —j<m'<j,ifj < j,
and G (j, — m;j,m)forallminitsrange —j<m<j,ifj'> j.
On using Eq. (2.6) in Eq. (2.2) with/ = H__, we get

i, —m 1 falfs —m)G (], —m;j, m)

+alj, —m)G(j,m’j, —m')} =0. (2.8)
When ' > j,m =j,and m' = —j — 1, this yields

G(J, —Jj,)=0, forallj > j (2.9)

Also, whenj > j, it is not difficult to see that Eq. (2.8) yields
the general formula

_ j—m v : _ - P A
G(7, —msjym)= A= U —mlall, —im = Lol —J+ NGU, —Shd) (2.10
alj, —mjalj, —m—1)-a(j, —j+1)
which, in view of Eq. (2.10), shows immediately that
G(J, —m;j,m)=0, j> j>|m|. (2.11)
Similarly, when ;' < j, we obtain, by setting m’ =j and m = — ' — 1 in Eq. (2.8),
G(/.j], —J)=0, forallj <. (2.12a)
Using this result in the general formula
. j—m Py ' ¥ 6 . ] dos sy
G, — m) = =W — el —m — ealf, =+ WG i =) 2120

a(j’ — m')a(jv —m — 1)"'a(j’j’ + 1)

which may be obtained from Eq. (2.8}, we obtain

(2.13)
In view of the remarks following Eqg. (2.7), it is easy to ob-
serve that Eqgs. (2.10) and (2.13) together imply that the coef-
ficients of 6 in Eq. (2.7) must vanish if j #j, so that
2.14)
Todetermine the nonvanishing elements G ( j, — m;j, m), we
use the relation

Glj, —m;jm+G(j —m—1;j,m+1)=0,
implied by Eq. (2.8) when j =, and

S m Gk + 1, m) 4+ mA;5;

- Cjk(j’ m)‘sj’.j- 1 }

X {G(_], — m),]’ m) - G(j,9 h my_]9 m)} = O,
which is obtained by using Eq. {2.14}in Eq. 2.2) with I = F,
and the property Eq. (2.15) of k (j, m). Whenj =/ + 1, the
latter relation requires, for all m = — m’ lying in the range
G(j, —m;jym—G(j+1, —m;j+1,m =0, (2.16)
which shows that G (j, — m; j,m) is independent of j. The
general solution of the Eqgs. (2.15} and (2.16} may be ex-
pressed as

G(j, —myj,m)=2Zy - 1)", (2.17)
where Z; is an arbitrary complex constant. It may be ob-
served that only those elements of G appearing in Eq. (2.17)

are nonzero. Substituting Eq. (2.17) in Eq. (2.14), we thus
have finally

G(j,m'sj,m)=Zy— 1)"6; 6, _ .

G(j,msj, —m)=0, j>j>Im|.

m,—m

G(j msjym)=8; ;6 mGljs —m;j, m).

(2.15)

(2.18a)
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Itis easy to check that this G satisfies Eq. (2.2) for the remain-
ing infinitesimal operators H_, F__, and F_ also, so that Eq.
(2.18a) provides the only solution of Eq. (2.2} for the metric

Taking the transpose of the matrix G, we observe that
G(j\m'sfm}=G (j,m;f, m') = Zof = 18, 8,
=Z(—=1)"""6, 8, _m
=(—1P"G (], m';j, m)
ie.,
G=(—-1"G,

since ( — 1) = ( — 1)2j° for each m. This shows that G is
symmetric or skew-symmetric according as j, is integral or
half-odd-integral. Further, since the G matrix is determined
only up to a multiplicative constant Z,, we may choose it so
that G is real both when j, is integral or half-odd-integral.
For simplicity, we choose

Z,=1, j, integral,

Zy=1i, j, half-odd-integral.
The fact that the representation matrices D ( ji, ¢) belonging
to the irreducible representation ( j,, ¢), with j, half-odd-inte-
gral, preserve an antisymmetric G in the sense of Eq. {2.1)
immediately establishes the following theorm.

Theorem 1: A/l irreducible representations | j,, ¢) of the
proper Lorentz group SO(3, 1), corresponding to half-odd-inte-
gral j, are symplectic in nature.

From this it follows in particular that the infinite-di-
mensional representations belonging to the principal series
and having a half-odd-integral j, are symplectic in addition
to being unitary.

(2.19)

(2.18b)
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In the £-basis, G has the block-diagonal structure

G=G, 4G, ., +G  ,+, (2.20)
where the submatrix G; has elements given by
Gm',m =2y — VY8, _,., —j<m’ m<j {2.21)

[The notation G;(m’,m) stands for the element in the m'th
row and mth column of the submatrix G;.] It may be ob-
served that when j; is integral, all the G; are real-symmetric
matrices of odd dimension (2 j + 1) with elements equal to
+ 1 appearing along the main antidiagonal. For example,
we have forj = 2,

Similarly, when j, is half-odd-integral, all the G, are real
skew-symmetric matrices of even dimension (2 j + 1) with -
elements equal to + 1 appearing along the main antidia-
gonal. For example, we have forj = 3/2

1

—1
G3/2 =

-1

So far, we have discussed G with respect to the canoni-
cal -basis only. A change of basis in B ( j,, ¢) evidently
changes the matrix G, and with an appropriate change of
basis G may be transformed to have a simpler (canonical)
form. If 7 = T¢ is a transformation from the &-basis to a new
“yp-basis” in B ( ji, c), then the representation matrices
D = D{j,, ¢) in the £-basis are transformed into matrices D'
of the 7-basis according to

D'=T~'DT, 5=T¢
Therefore, the relation DGD = G implies
T-'D'TGTD'T'=G,
so that we have
D'G'D'=6G",
where
G'=TGT (2.22¢)

is the metric matrix in the #-basis. Evidently, the symmetry
(or skew-symmetry) of G is preserved under this transforma-
tion.

In the case of a real skew-symmetric G corresponding to
symplectic representations, a 7 generated by a sequence of
elementary transformations!? may be used (if so desired) to
throw G into the standard symplectic form’

o=, (", o

On the other hand, in the case of the representations
(Jo» ¢) which preserve a real symmetric G, i.e., when j, is
integral, a new 7-basis in B ( j,, ¢} may always be chosen such
that G is transformed into a unit matrix. To show this expli-
citly, we consider a class of basis transformations of the form

(2.22a)

(2.22b)

(2.23)
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771*,m' = T(j’! ml;j’ m)é-j.m
=T{j,mj,m),,, (jj,m m allintegral),

(2.24a)
where the transformation matrix T is given by
T(j,mJ,m)

=pm) b + b, )b ;. (2.24b)

The complex coefficients p{m) which appear here are defined
for all m in — j<m<j, and are assumed to satisfy the rela-
tions

plm)pl — m)=4i( — )" * 1, (2.25)
plm) p*(m) =1, (2.26)
where p*(m) is the complex conjugate of p(m). As a conse-
quence of these two properties of p(m), it follows that
plm)=i(— 1)+ p*( — m),
and this in turn implies the useful relation
pim)p*m — 1) = — { p( —m)p*(—m + 1)}*. (2.27)
The defining equations (2.25) and {2.26) do not determine the
coefficients p(m) uniquely; in fact, a whole family of solu-

tions exist for these equaitons. Of these, we may specially
note the solution

(2.28)

for which p(m) p*(m — 1) = + i/2 according-as m >0 or
m<Q0.

It may be observed that the transformation given in Eq.
(2.24) does not mix up the basis vectors belonging to different
subspaces M, of B ( ji, ¢) because of the factor §; ;., and hence
the matrix 7" may be expressed as the direct sum

plm) = }(1 — ilexpli|m|7/2),

T= Tjo'i'Tjo+1 +T}0+2+"', (2-293)
where any submatrix 7; has elements
T(j, m;j, m'=T;(m, m’)
:p(m){am,m' +i5m,—m']’ _.]<m<.]'
(2.29b)

Using the property Eq. (2.25) of p(m), it is easy to check that
the T given by Eq. (2.24b) is unitary, i.e.,

T{j,mj", m"\T'j", m";j', m')
— TT(_], m;j", m”)T(j", mll;j!’ m/)

=E(j, m;j, m'), (2.30)
where
T, m; j, m')=T*j, m; j'm’)
= T*j, m';j, m) (2.31)
and
E(j,m;j, m')=6; ;8 (2.32)

are the elements of the unit matrix E. Similarly, using Eq.
(2.24b) and (2.22c¢), it may be checked that the metric matrix
G’ in the new 7-basis is given by
G'(jimj,m)=E(jmj,m) G =E. (2.33)
Therefore, from Eq. (2.22b), it now follows that the represen-
tation matrices D '=D'(j,, c) satisfy (for integral j, only)

D'D'=D'D’'=E.
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We thus have the following theorem:

Theorem 2: All irreducible representations ( j, c) of
SO(3, 1) corresponding to integral values of j, are equivalent to
complex-orthogonal representations.

In particular, for the finite-dimensional representations
of SO(3,1) corresponding to j, and ¢ both being integral, the
above result implies that the group of matrices D ( j,, c)is a
subgroup of the complex-orthogonal group SO(N, C) where
N = ¢* — % is the dimension of the representation. Here we
may also recall the known result that for N = 3, i.e.,c =2,
Jo=1, D(1,2) is actually isomorphic to SO(3,C).

Secondly, we observe that since the transformation 7 is
unitary, all those representations which were unitary in the
canonical §-basis remain unitary in the 7-basis also. Com-
bined with the property of complex orthogonality in the 7-
basis, this means that all the unitary representations { j,, ¢) of
S0(3,1) corresponding to integral j,, i.e., the entire comple-
mentary series and those of the principal series with integral
Jo» are actually real-orthogonal in the y-basis. It may be ob-
served that this special property is really an extension of the
known result'>"' that the (unitary) D ’ representation of the
subgroup SO(3) are equivalent to real-orthogonal ones if j is
integral. Here it may also be appropriate to note that the
remaining (unitary) D / representations of SO(3), corre-
sponding to half-odd-integral j, are symplectic by virtue of
Theorem 1. Hence the matrices of a genuine spinorial repre-
sentation D / of the rotation group form a subgroup of the
unitary symplectic group®® Usp(2 j + 1).

We now proceed to construct explicitly the infinitesi-
mal operators 4 (,, and B ,, corresponding to integral j, in
the 7-basis. For this purpose, it is convenient to introduce
two new sets of coefficients ¢,(m) and g,(m), which are relat-
ed to p(m) as follows:

g\(m)=p(m) p*(m — 1) + p( — m) p*( — m + 1), (2.34a)

golm)=p(m) p*(m — 1) — p( — m) p*(— m + 1). (2.34b)

Using Eqs. (2.27) it is easy to check the following properties
of ¢,(m) and g,(m)-

gHtm=—q(xtm=q(Fm+1), (2.352)

GglEtm =gl(xm)= —q(Fm+l) (2.35b)

Observe in particular that ¢,(m) are purely imaginary where-
as the g,(m) are real.

Now, if I is any matrix in the £-basis and I’ its image in
the n-basis given by Eq. (2.24), then we have, on using Eq.
(2.22¢),

I'(js m'; j, m) = p*(m’) p(m{I (', m'; j, m)
+p*(—m)p(—m](j, —m';j, —m)
+ip*m')pl —m)l (], m';j, —m)
—ipX—m)pm)I (], —m';jm). (2.36)
Transforming the H ’s and the F’s using the relation and then
using Eqgs. (1.9), (1.10), and (2.3)—2.5), we get

Aj,msj,ml= —mé; 6, _,., (2.37a)
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A (’1)(jl, m'; j, m)
= - %iaj".j {a(j’ m)ql(m)am'.m —1
+ a{j’ - m)ql( - m)‘sm’,m +1

— ia(j, m)qz(m)(sm" —m+1

+ia(j, —m)gol — M, _ 1} (2.37b)
A4 1'2;(j', m'; j, m)
= 16;,;1alJ, migx(m)B . m — 1
+ a(j, — m)gz( — M)y m 41
— ia(j, mg\(m)b,, i1
+ia(j, —m)gy( — M)y, _m 1} (2.37¢)

Biy(J'sm'sjs m)=md;8; ;6
— 18, {Cik (j, m)S; ;
—C k(i +1,m)b; ;1 ), (2.38a)
B(l)(jl’ m'; j, m)
= %i(sm',m —1 {%(m)AjaU’ m)6f,j
+ @:(m)[C;b (j, m}5; ;
+C \b(j, —m+ 2)51“,j+1 ]]
+ %iam',m il — m)Aja(j! - m)‘sj,j
+q(—m)[Cb(j, —m);,;_,
+ Cj+ 1b(jym+ 2)5],j+ 1] }
+ 30w, — 11 [2lm)A;a(j, m)B;
+ qi(m)[C;b (), m)b; ;
+Cb(jy, —m+2)5;,,]}
~ 10, _m—1 (gl — m);alj, —m)5;
+aq.(— m)[cjb (/s — m)‘sf,j— 1
+ Cj+ lb(j’ m+ 2)‘51"1’+ 1 ] }’
By(j,m'sj, m)
= — 16, m_ 1 192lm)4;a(j, m); ;
+ ql(m)[cjb (J, m)af,j— 1
+ Cj+ 1b(j’ —m+ 2)61",j+1 ] }
- %5m',m +1 {qz( - m)Aja(j9 - m)‘sf,j
+ g4 — m)[cjb (/, — m)‘sf,j- 1
+ C]-+,b(j,m +2)5f.j+1 ]}
+4ib, i {41(’")Aja(j’ m)6; ;
+ @:(m)[C;b (), m)s; ;
+Cab(j, —m+ 2)51".j+ 1] J
— 4, 1 g — m4;alj, — m)b; ;
+ g —m)[Gb(j, —m)§; ;
+Ci i b(jim+2)5;,,,]} (2.38c)

These matrices are seen to simplify considerably if we choose
for p(m) the special solution given in Eq. (2.28) as then
q,(m) =0 and g,(m) = + i according as m >0 or m<Q0.
Using the fact that ig,(m) and g,(m) are real [for all solu-
tions p(m) of Egs. (2.25) and (2.26)] and the properties of the
real coefficients a( j, m), b (j, m), and k (j, m) defined in Egs.
(2.5), it is easy to check directly, by using Egs. (2.37) and

(2.38b)
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(2.38), the following properties of the 4 () and B /,,:

(i) All the six generators 4 (,, and B ,, are skew-sym-
metric.

(ii) The three rotation generators 4 |, are real.

(iii) In the case of unitary representations (with integral
Joonly) the boost generators B (,, are also real due to the fact
that 4; are all real and C; are pure-imaginary.

(iv) The B (,, are pure-imaginary in the case of finite—
dimensional representations (only) as then the 4, are all
pure-imaginary and the C; are all real.

These properties provide an explicit verification of the
special properties already obtained for the representations
(Jo» €) corresponding to integral values of j,. The property (i)
shows that the matrices D '( j,, ¢) are complex-orthogonal
when j, is integral. Properties (ii) and (iii) show that the uni-
tary representations ( ji,, ¢) are equivalent to real-orthogonal
ones if j, is integral.

The property {iv) shows that all the (finite~-dimensional
unitary) integral-j, representations of the four-dimensional
rotation group SO(4) are equivalent to real-orthogonal repre-
sentations. This special property of the representations of
SO(4) is implicit in the result that SO{4) is a direct product of
two groups each of which is isomorphic to SO(3), and that
the integral- j, representations of SO(3) are equivalent to
real-orthogonal ones. To see that the properties (i) and (iv), of
the generators of the finite-dimensional representations of
SO(3,1), imply the above-mentioned property of SO(4), it is
sufficient to observe that the real skew-symmetric matrices
o, and %, defined by o, =4, and # ,=iB,
would be the matrices representing the corresponding infini-
tesimal generators of SO(4).

Lastly we examine the finite-dimensional irreducible
representations of SO(3,1) with regard to the two special pro-
perties, namely (i) real-pseudo-orthogonality and (ii) pseudo-
unitarity.

It is well known (see, for example, Lomont'®) that
among the finite-dimensional irreducible representations
D" of SO(3,1), where the positive numbers J and J ' are
either integral or half-odd-integral, only the D * representa-
tions are equivalent to real ones. Equivalently, this means
that the { j, = 0, ¢ = n) representations, where n = (2J + 1)
is a positive integer, are the only finite-dimensional irreduci-
ble representations of SO(3,1) which are equivalent to real
ones. In addition to being real, the self-representation (0,2) is
known to be pseudo-orthogonal with the signature (3,1).
Hence it is of interest to find out whether the other real finite-
dimensional representations (0,n) are also pseudo-ortho-
gonal with some specific signature. We now show that the n’-
dimensional (0, n) representation where n = 1,2,3,... are the
only finite-dimensional irreducible real-pseudo-orthogonal
representations of SO (3,1} and that the corresponding signa-
tureis (N,, N_J, where N, = nfn + 1)/2 and
N_=nn—-1),2

We prove the result by transforming to a new p-basis
from the 7-basis by

Prm =S w5y Y = S U3 7' my s (2:39)
where the transformation matrix S is given by

S(j,: ml;j9 m) = (i)j+ l5j"j(5m'.m’ (240)
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and the indicesj, j', m, and m’ are all integers (we are consid-
ering only those representations for which j, is an integer).

Using Eq. {2.40), we see that the infinitesimal genera-
tors ] ” in the p-basis are related to the corresponding genera-
tors I’ of the p-basisby I” =S ~'I'S, i.e.,

(2.41)

In particular, for the (0, ) representations for which the
coefficients C; are all real (asj <c = n), 4, = in,and 4; =0
for all j#0 [see Eq. (1.7) and (1.8)], a direct check using the
above equation shows that all the six generators 4 [, and
B (;, arereal. Next we observe [see Eq. (2.33)] that the metric

a

G " in the p-basis is given by G " = SG'S = S5 so that
1)/*18, .5 (2.42)

JiYm'ms
which is a real matrix (asjis an integer) having + 1 along the
main diagonal. For the (0, n) representations, it is easy to see
that G ” is the n’- dimensional diagonal matrix

G"= — E0+E3‘H - E5)++( —1)E,, _,
n—1
=5 H-TE,,

j=0
where E, is the k-dimensional unit matrix. The signature
(i.e., ““the total number of plus ones minus the total number
of minus ones™) of this G ” is evidently + » when 7 is even
and — n when »n is odd. However, since a metric is deter-
mined only up to a constant multiplicative factor, we may
take the metric preserved by the (0, n) representation to be
( — 1)"G " so that the signature is + n irrespective of
whether 7 is even or odd. The signature of this metric may
also be expressed as (N, , N_), where N, = n(n + 1)/2 and
N_ =n(n — 1)/2. It is thus proved that in the p-basis, the
(O,n) representation is real pseudo-orthogonal with the signa-
ture {N_, N_}. We may also note that the (0,n) representa-
tion matrices form a subgroup of the real group
SON,,N_,R).

The question of pseudo-unitarity of the representations
of SO(3,1) has been completely solved by Gel’fand, et al.,’
and the irreducible representation ( j,, ¢) is shown to be pseu-
do-unitary (in the sense that it admits an invariant Hermitian
form) only under the conditions that either

I'(f, m's j, m)y= @)= T'(j, m's j, m).

G "(j'» m'; j, m) = (—

(2.43)

¢ is purely imaingary and j, is any integer or half-odd-
integer (2.44a)

or

cisreal and j, = 0. (2.44b)
It may be observed that these conditions of pseudo-unitarity
include the unitarity conditions, i.e., conditions under which
(jo, ¢) would admit a positive-definite Hermitian form, given
in Eqs. (1.14a) and (1.14b). It is well known that the finite-
dimensional irreducible representations of SO(3,1) {with the
exception of the trivial (0,1) representation] are not unitary.
However, the condition (2.44b) of pseudo-unitarity is satis-
fied by the (0,n) representations which are therefore evident-
ly the only finite-dimensional pseudo-unitary representa-
tions of SO(3,1). In fact, in the £-basis, it is easy to check that
all the six generators 4, and B, of the (0,n) reresentation
are “pseudo-skew-Hermitian™ in the sense that they satisfy
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I'r=—roi, (2.45)
where I' is the indefinite Hermitian metric
rj,m;jym=(— )7+ ‘51‘,].6,,,.,,,‘. (2.46)

Thus in the £-basis the (0,n) representation is seen to be pseu-
do-unitary with respect to the metric I'. The signature of I"is
easily seen tobe (N, N_) = (n{n + 1)/2, n(n — 1)/2). We
may also note that the (0,n) representation matrices form a
subgroup of the pseudo-unitary group SUNV_,N_, C) of
dimension (N, + N_)= n’. However, since the (0,n) re-
presentations are equivalent to real ones, the above-men-
tioned pseudo-unitarity reduces to the already discussed
real-pseudo-orthogonality in the (real) p-basis.

The pseudo-unitarity conditions given in Egs. (2.44a)
and (2.44b) also show that none of the finite-dimensional
symplectic representations (for which j, and c are simulta-
neously half-odd-integral) is of the unitary-symplectic type
with some specific signature (see Wybourne® or Gilmore® for
a definition of these groups).
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A class of complex finite-dimensional Lie algebras is constructed, the center of the universal
enveloping algebra of each element of which is not finitely generated. For the construction of these
Lie algebras, we use the counterexample of Nagata answering Hilbert’s 14th problem in the

negative.

PACS numbers: 02.20.Sv

A large number of papers investigate Casimir operators
because of their usefulness in pure mathematics as well as in
their applications in physics (see the references of Ref. 1).
One is interested in knowing a minimal generating set of
Casimir operators, and it was hoped that the cardinality of
such a set would be finite for all Lie algebras of finite dimen-
sion® (see also Ref. 4 on Hilbert’s 14th problem). In this
paper, a whole class of finite-dimensional Lie algebras is con-
structed, the elements of which have the property that the set
of their Casimir elements (so we call the elements of the cen-
ter of the universal enveloping algebra of a Lie algebra) is not
finitely generated. In Ref. 5 (pp. 165-166), one such Lie alge-
bra is given in a remark without proof. This Lie algebra is
identical with the lowest dimensional Lie algebra from our
class of Lie algebras.

Let usnow introduce our notation: S (¥ ) means the sym-
metric algebra over the vector space V, and S; (V) is the
algebra of the invariants of a group G, acting as a transforma-
tion groupin V, in S(V), i.e., Sg(V): = {se S(V)|gls) =
g € G }, wheregis the unique extension of g € G toanalgebra
automorphism of S (V). For a Lie algebra L we denote by
S (L) the algebra of the invariants of the adjoint group
Int(L )of LinS(L).Finally Z (L ) denotes the set of the Casi-
mir elements of L, i.e., Z (L) is the center of the universal
enveloping algebra U (L) of L.

At first we prove a general lemma and then, using Na-
gata’s counterexample to Hilbert’s 14th problem, construct
Lie algebras which fulfill the assumptions of the lemma. In
the following is K the field of either real {R) or complex (C)
numbers.

Lemma 1: Let V be a finite-dimensional vector space
over K, G a connected and nilpotent Lie subgroup of the
group of the automorphisms of ¥, L the Lie algebra of G,
d:L—End (V') the (faithful) representation of L in the endo-
morphisms of ¥ which is induced by the action of G on ¥,
and L: = Ve L (& means direct sum of vector spaces) the
Lie algebra defined by the Lie product [v, + x, 5 + X217 :
=d(x))v) — d(xy)v) + [x, 2] .00 € Voxy,x, € Lie,
L = V &L, where & means semidirect . sum of Lie algebras
and ¥V is made into an abelian ideal in L ). Then we have the
following: If S; (¥ is not of finite type, then S|, (L ) is not of
finite type.

Proof: We will prove the lemma in three steps.

(a)LetS: = [se S (V)|dy(s) = 0,x € L |, whered, isthe
unique extension of d (x) as derivation on S (V'), and
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expg,:d {L }—G the exponential mapping of d (L )into G. Let
s €S4(V). Then expg(td (x))(s) = s, x € L. By differentiation
after 7 and setting ¢ = 0, we get: d, (5) = 0. Therefore
S.(V)C S. Now let5 € S. Then exp(fix)(§) = expg (d (x))(5)
=35. As G is connected and nilpotent, we have

expg(d (L)) = G (for the proof, see Ref. 6, p. 229) and, there-
fore, SC S, (V). From the statement before, we have then
S=S.V).

(b} We want to show that S;(V)CS,,, (L ). Clearly,

SqcMcswyics (L ). Let ad; be the adjoint representation

of L (in L) and ad; (X} be the unique extension of ad; (%),
X € Z as derivation onS (Z ) (it is well known that S|, (2 )

{seS fad (X)s) = O,fceZ}).Thenwehave:
adL(v) (s)=0,veV,seS(V), and because of
ad; (x)(v) = [x, v]; =d (x){v), ve ¥V, x € L, it holds that
fa‘cm}/c) =d,. Therefore, we havefork =v+xeL,veV,
x €L, and s € Sq(V): 5d;TR)is) = ad7 o))
+dy(s)=0 + 0=0by the first part of (a). Therefore
S;{V') is contained in Sy, (L ) and it holds that
Se(V) =SV Si(L).

(c)Let {v, ..., v, } and {x,, ..., x,, }, n, m € N, be a basis

of ¥and L, respectively, and {s, },., a generating set of
SilL).s, =5, (v, ., U, X4, ..., X,,) is a polynomial in the

basis [ U, co, Uyy Xy ey X0 of L. Let us assume that card {I)
< . As with s,, every homogeneous part of it is an element
of S, (L ); we can conclude that there exists a minimal gener-
ating set = of S}, (L )consisting of homogeneous elements
with card (2) < . We define 2: =2 nS4(V)and

3, = 2\ =, (\ means the set-theoretical difference). Clearly
3,nZE, :%tfe 2,nS (V). Then it follows for

xel: 0 =ad; (x)(f)=dy(f), and by (a), f€ S;(V), which is
a contradiction. Therefore 2, n S (V) =, and we have for
any fe 2,:f=f, + f> where f; € S{V), f; is homogeneous,
and f , is a homogeneous polynomial in v, ..., U,,, Xy, ..., X,,,
such that in every monomial of it at minimum one x,,
I<k<m, appears as a factor. Now, let again x € L. Then,

0 =G5\ /) = dy (i) + Ad: ) ( /), where &y F) € S (V)
and m)(f) is elther zero or a polynomial in v, ...

v,,X,, ..., X,, such thatagainin every monomial of it at min-
imum one x, appears as a factor. From this, it follows that
d,(f,) = 0and ad; )(f) = (. Therefore we have, by (a) and

(b), £, GSG(V)gSlm( Jand f, = f—f, eSlm(L) Now, we

construct a new integrity basis for Sy, (L ).
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Si= SV3,  UZ,,, where 3, = fil i+ o=/
f€2,}1,2,,: =L+, =/ff€Z,},and f, and f; are the
summands of f € Z, as before. The sets Z,, 2, ;,and 2, ,
have all cardinality less than infinity and it is clear that all
elements of S; (V') must be generated by 2, U =, ; because
algebraic combinations with elements f, € 2, , cannot be
elements of S (V') (up to constant elements). But this is a con-
tradiction to the supposition that S¢(¥) is not of finite type.
Therefore S, (L ) is not finitely generated. |

Now we introduce the groups which were constructed
by M. Nagata.’

Definition: Let r€ N, r>4, and a;;, 1<i<3, 1< j<r, ele-
ments of K which are algebraically independent over the
field of rational numbers Q. Then we define the group
G: = {0 € GL(2r, K| the entries o, of o fullfill the following
algebraic equations (1) to (8):

0, =0, j>i (1)
0,=0, l<j<i<r )
o,=0, r41<j<i<2r (3)
0, =0, 1<j<r, i>j+r (4)
o, ., =0, lI<i<j<r (5)
H au‘ = 1’ (6)
i=1
Ty =iy rinr =0, 1<i<r (7)
> a [[ ou0iv .. =0, 1<k<3). {8)
i=1 I=1

1 #i

Remark:Let(C,C,, ...,C.)e K"withIT/_, C, = 1 and
(61,65, ..., b,) € K"with " a,, b; =0,1<i<3.Theno € Gis

j=1
of following form:

F (& 0 ]
. 0
CV’
7= cb, 0 < 0
| O c,b, 0 ¢ |
and we have
[ 1
¢, 0
0
0 1
—1 c"
0’ ==
— b, o 1 0
4 <
0 L/ I !
i - o

The composition of o, 0’ ' € G is
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- o 7
< 0
0
0 id
(4
o0 =
Sip,—b7) o
C; 0 C; O
0
b, —b2) 0 <
L 4 ¢ _j

the entries of which fulfill, of course, again Eqs. (1)—(8) in the
definition.

Lemma 2: Let G as in the definition. Then we have the
following.

(a) G is an abelian algebraic subgroup of GL(2r, K).

(b) G is a Lie group.

(c) For K = C, G is connected.

Proof: (a) By Egs. (1)(8) in the definition, G is an alge-
braic group. The commutativity of G is obvious.

(b) Let G carry the induced topology of GL(27, K). Then
G is as an algebraic subgroup of GL(27, K) a closed subset of
GL{2r,K). InRef. 6 (p. 105), it is proved that such a groupisa
Lie group.

(c) We prove in this case that G is arcwise connected,
from which it follows that G is connected. G is topologically
isomorphic to £2 X €'~ *, where £2:

={(Cy, ..., C,)e C'| II;_, C, = 1}. Therefore itsuffices to

prove that £ is arcwise connected. Let (C,, ..., C,) and
(C1, ..., C})betwo points of £2. We construct a path e (¢ )in 2
with w(0) = (C}, ..., C,) and (1) = (C1,...,C}). In polar co-
ordinates we have (C,, C,, ...,.C,) = (R, ..., R., &, ... 98,),
(C1.wC)) =(R{,..,R.,$1,.. ¢ ) with
R,---R, =R} .- R;=1l,and 3'_, ¢,
=2/ ,¢/=0 mod 27

Now let w(t): = (R\(¢), ..., R,(t), d,(t), ..., &,(t )) with

R(t}:=(1+t(R!/R,—1)) R, for 1<i<r — 1,

R.it): = L

R,

r—1 4

.H (1+¢(R!/R, = 1))
t):=¢, +t(d] — @) for I<i<r—1,
and

r—1

sr=6. (3615 8)

=1 i=1

It is easily seen that the denominator in the definition of
R, (¢) does not vanish for t € [0, 1] and that I_\R,(t)=1
and 37_, 4,(t) = O mod 27, i.e., w(t) € 2 with initial point
(Cys ..., C,)and endpoint (C1, ..., C’). Therefore {2 is con-
nected and our proof is complete.
For the following theorem, see Ref, 7.

Theorem: Let r = 5%, s € N, s>4, V a 2r-dimensional
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vector space over K, and G as in the definition. Then S, (V) is
not of finite type.

And now our statement:

Lemma 3:Let K=C, r, G,and Vasi in the theorem, L
the Lie algebra of G [cf. Lemma 2b ], and L asin Lemma 1.

Then Z (L ) is not of finite type. R

Proof: We have, by Lemma 1 and 2: 8y, (L ) is not of
finite type, because G as abelian group is nilpotent. In Ref. 1,
Lemma 1 is proved thataset £ C Sy, (L )1s a generating set
of St (L )ifand only if A (2)isa generatmg setof Z (L ), where

A is a vector space isomorphism of S (L ) onto U (L ) with
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A (St (L N=2Z (L ) (the proof is given there for a finite set =,
but it is obvious by inspection that the proof remains valid
for arbitrary cardinality of 2).
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The isomorphic map of Clifford and Lie bundles to arbitrary coordinate atlases using a global
orthonormal tetrad field on a parallelizable space-time is used to construct a fully covariant Dirac
spinor theory. The Klein—Gordon equation exhibits a natural spin-torsion coupling of the
Einstein—Cartan form, the torsion coming from the tetrad field. The tetrad connection
coefficients are explicitly derived in addition to their relationship to the usual Levi-Civita
coefficients. Various topological conditions for vanishing torsion are given. The Dirac and adjoint
Dirac equations are obtained from a simple Lagrangian and the structure of the adjoint equation

is discussed.

PACS numbers: 02.40.Re

I. INTRODUCTION

Global geometrical methods in general relativity have,
over the past twenty years, resulted in some spectacular ad-
vances. The singularity theorems’ are, of course, a prime
example of global structure implied by a physical theory.

Very important results on the existence of a spin struc-
ture on a space-time iff the underlying manifold admits a
global tetrad field are found in the seminal works of Ger-
och.? Parallelizable space-times (those which admit a global
tetrad) then also admit a global orthonormal tetrad, orthon-
ormal via the Lorentzian metric g(x). Physically, this corre-
sponds to choosing a Lorentz frame at each x in M relative to
which the metric has components 7, =(— — — +).
Mathematically, we may describe this choice of a Lorentz
frame at each x in M as a smooth cross section of the orthon-
ormal frame bundle, O (M }. Important recent applications of
orthonormal (on) tetrad®~" techniques have been reported. In
particular, Weinberg?® gives an excellent discussion of the
physical principles underlying the tetrad approach.

Of importance to this paper, too, are the early results of
Weyl and of Schrédinger on generalizations of the Dirac
equation.®

In this paper, we consider the full implications of the
tetrad map of Clifford and Lie algebra elements to arbitrary
coordinate charts on a space-time (M, g). Since we assume
the existence of a spin structure” on the space-time, we then
may take the on tetrad on the manifold to be globally de-
fined. We assume at least C? differentiability for g{x) and at
least C ? for the tetrad field.

It is shown that by using the local on tetrad to express
Dirac (Clifford) algebra units 7° relative to a local coordinate
chart, a Lie algebra isomorphism of the proper Lorentz
group SO™ (3, 1) is obtained. The isomorphic nature of the
tetrad map and the general scalar nature of the Dirac wave
amplitude, ¥{x), under changes of manifold coordinate atlas,
lead to a generally covariant Dirac theory whose Klein—
Gordon equation exhibits torsion in the classic Einstein—
Cartan sense.’™"! The torsion arises naturally from a connec-
tion on the space-time induced by the tetrad field cross sec-
tion of O (M ). In the subsequent paper, acceleration covar-
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iance of the theory is demonstrated when a smooth change in
tetrad field, representing a pointwise change of Lorentz
frame, is induced by a global timelike congruence of observer
trajectories.'>"?

Il. THE TETRAD MAP

We let (M, g) be a parallelizable space-time'* and choose
aglobal on tetrad field, K, (x),a = 1, 2, 3, 4, for M. Foreach x
in M we then have g(K,, K,} =7, =(— — — <+ ). This
tetrad field then specifies a Lorentz frame at each x in M
which is, by definition, a basis for the tangent space 7', at
each x in M. The tetrad 1-forms »”(x) dual to the tetrad fields
at each x form a basis for the cotangent space 7' ¥ for each x
in M. We shall denote the tetrad on 1-forms by K ~ '“(x). We
then have® w”(x) = K ~*(x) = p%g(K, (x), ).

Arbitrary tensors are then expressible in components
relative to the tetrad field and 1-form bases by suitable ten-
sor products and projections.” For example, an arbitrary (1,
0) tensor 7 (x]} is expressed in tetrad components via 7, (x)

= g(K,(x), T{x)} which is, in a local coordinate chart, ex-
pressed as T, (x) = g,,,. (x)K 5 (x)T*(x).

Similarly, since an on tetrad at x is a Lorentz frame at x,
strictly Lorentzian quantities which are defined with respect
to these on frames may be expressed relative to a local coor-
dinate chart via the use of the tetrad. Formally, such Lorent-
zian quantities transform under a change of on tetrad at x via
the full Lorentz group O(3, 1), the structure group of the
fiber over x of on frames in the on frame bundle O (M ). This
on frame bundle is trivial in the case of the parallelizable
manifold we are considering.'

A Lorentzian quantity of great interest is the set of
Diracelements y,a = 1, 2, 3, 4 which are Lorentz invariant.
We find that the Dirac units 7* may be usefully expressed in
local coordinates via

rx) = K5 x)p”,

giving an isomorphic Clifford anticommutator

[Vu(x)ﬂ/v(x)] + = 2g"x)1, (2.1)
where 7{ — — — +)issimply replaced by g.
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We shall state this and subsequent results in terms of
sundles. We have, so far, considered T,,, the tangent bundle
over M, and, implicitly, the bundles T7(M ) of (r, s) tensors
over M. The on tetrad field is a cross section of O *{M ), the
oriented on frame bundle over M, a principle fiber bundle
with structure group L, ~SO™* (3, 1), the proper Lorentz
group. We have also considered the Clifford bundle''® over
M defined by assigning the full Dirac algebra to each point
xeM. In general coordinate charts, the isomorphism
between the flat R * Dirac algebra and Eq. (2.1) results from
the fact that the matrix K#(x)eGL (4, R ) for each xeM.

We consider the O * (M ) bundle again and note that the
global trivialization of O *(M ) (since M is parallelizable) al-
lows the identification of a trivial Lie bundle over M. This is
simply the bundle over M of SO * (3, 1) fiber (vertical) tangent
spaces at the identity element of each fiber. Since the frame
bundle is trivial, we may choose the usual SO (3, 1) genera-
tors'’, M ** = — M ®, at each xeM, to generate the Lie alge-
bra of SO™(3, 1). As with the Clifford elements 7* we may
tetrad map to a local coordinate chart to obtain

M*(x) = K“(x)K }(x)M . (2.2)

The local-coordinate generators of Eq. (2.2), in fact, sa-
tisfy a commutator Lie algebra isomorphic to the flat R * Lie
algebra of L, but withp =(— — — <+ )replaced by
g""(x) for each xeM. The isomorphism is again due to the
nonsingular nature of K #(x).

The existence of a spin structure on M is based on the
existence of a 2-1 bundle morphism A:S (M )0 * (M ) where
S (M) is the bundle of “spin frames” [C’ bases over M with
structure group SL (2, C)]. We now consider the Dirac spin-
frame bundle D (M ) of bases for C* with structure group SL
(2,C)®SL(2, C)represented by D "/>? ¢ D *'/? The Lieal-
gebra generators in this trivial bundle are proportional to o

= (—i/2)[y%, ¥*,] obtained from the Clifford elements.'”

The tetrad map of the o to local coordinates, via

0*"(x) = K {(x)K } (x)o*", (2.3)

results in a Lie algebra isomorphism identical to that of the
tetrad map of the self-representation generators of SO™ (3.1)
given by Eq. (2.2).

The essential result is that the flat-R * Clifford and Lie
algebra elements, when expressed via local tetrads relative to
tangent space bases derived from local coordinate charts, are
general tensor components. For example, (x)d, =D (x)isa
vector field operator in the general sense. Similarly, o**(x)
are (2, 0) antisymmetric general tensor components for each
xeM.

We define the Dirac spinor field'® ¢ as a map ¢¥:M—C*
by x—{x) or, more elegantly, as a smooth cross section of
the vector bundle (O (M }X,C*) where G = D /20 ¢ D ©1/2,

Under a local change of coordinate charts (containing
xeM ), the image #(x)eC* is unchanged and ¢(x) is a general
scalar field* on M. But, under changes of local on tetrad at x,
the SO (3, 1) — SL(2, C) homomorphism induces
D 1/29 g D ©172 coordinate maps of ¥{x). Hence ¢(x) is a
spinor® under changes of local Loreniz frame (on tetrad) at
xeM.

2408 J. Math. Phys., Vol. 24, No. 10, October 1983

The Dirac equation may then be written, given a choice
of tetrad field, K, (x),a =1, 2, 3, 4, on M, as

(¥(x)d, + im)¢(x) = R (x). (2.4)

Unless a change in local tetrad is made, no connection
coefficients are needed.” The operator D (x)=7"{x)d, isavec-
tor field operator and the Dirac equation is a general scalar
and a Lorentz spinor.

The Klein-Gordon equation is constructed, as usual,
by operating with (D (x) — im) to yield

[y %),0, + 7(x)(8, 7" x)3, + m*]¥(x) = S(x),
(2.5)

where S (x) = (D (x) — im) R {x).

We next take symmetric and antisymmetric parts of the
first two terms in Eq. (2.5).

Assuming that i(x) is of class C*(M ), k>2, only the
symmetric part of y*(x)y"(x)d, d, ¢ contributes in the form
g""(x)d,d,¥. Some detail is necessary in treating the second
term y*(d, v")d, ¥ of Eq. (2.5).

We write, using the orthonormality of the tetrad fields,

Y(x)3, 7" %) = Y3, K (x)y”
= Px)8,K ;(x)K ;XK &(x)y”
— V) [K 5 x)3,K o "(x) ] x)
= — PX) [T o (x)]77(), (2.6)

where K ~ '°(x) are the dual tetrad 1-forms. The affine con-

nection coefficients, I" = KK ~', define the connection'®*°

associated with the given tetrad field cross section of O * (M ).

This connection defines parallel transport relative to the

horizontal subspaces of T, ., defined by the tetrad field.

This is discussed in detail following further manipulations.
We finally write the second term of Eq. (2.5) as

= PN a(x) = — g (X) — 104X) T (),
by taking symmetric and antisymmetric parts.

Here, )~"fm =I e ™ r = 18 the local coordinate
form?' of the torsion of the affine (tetrad) connection. The
Klein—Gordon equation is, then,

[£°10.9, — T'%,,3,) — o x)T %, (x)3, + m*]¢ix)
=5 (x).

We see that this generally covariant Klein-Gordon
equation contains the tetrad affine connection rather than
the Levi-Civita metric connection. However, we show in
Sec. Il that g*I";;, = g°T 4 and, hence, Eq. (2.7) is the
usual Klein-Gordon equation with a torsion term from the
tetrad connection. The torsion of the tetrad connection, here
coupled naturally to the spin operator o{x) in the classic Ein-
stein—Cartan form,° is an intrinsic structure on a paralleliza-
ble manifold with a global tetrad field. The vanishing of the
torsion requires a rather stringent condition on the cohomo-
logy structure of the space-time. This is described in the next
section which considers details of the tetrad connection coef-
ficients.
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lll. THE TETRAD CONNECTION

The tetrad connection coefficients, I, relative to a given
coordinate atlas, are clearly associated with parallel trans-
port relative to the horizontal subspaces'® of T, - 4, defined
by the given tetrad field cross section of O *(M ).

This is immediately seen by a direct manipulation in
local coordinates since, using the usual tetrad orthonorma-
lity relations,® we obtain

a,. K" =39, Ky8
=3, K4(K K= —K4d. K, K.

This may be written as
3. K4 +T“K;=0, (3.1)

where the connection coefficients I are defined as I
= K,dK ~'*. Now, Eq. (3.1) may be written in invariant
form, for all @, b values, as

ﬁkaa =0, (3.2)

which expresses the horizontal parallel transport of the tet-
rad fields relative to their own connection.

It is easily shown that y#(x) [Eq. (2.6)], 0**(x) and any
other SO (3, 1) (Lorentz) tensors mapped to the local coordi-
nate basis for 7, by the local tetrad map are general GL(4, R )
tensors which parallel transport via V, the tetrad connection.

It is also informative to express the Levi-Civita metric
connection I in terms of the tetrad connection coefficients
I". In local coordinates, using the usual expression’ for the
metric connection along with the tetrad orthonormality re-
lation 7“°K “K ;, = g"* we obtain

Tty =g"g, Y5, + Ty, (3.3)

where ( ) brackets denote symmetrized indices.

The combination of Egs. (3.1), (3.3), and the definition
of torsion in terms of T, in fact, constitute a restatement, in
terms of the tetrad field’s affine connection, of the ‘“‘vierbein
postulate” commonly used in quantum gravity formula-
tions.*?2 Several useful contractions of Eq. (3.3) are g“'T"%,

=gre,. re, =rs, r., =—-7r4 =0andg"7s,
=0.

In Sec. IV, the orthonormal congruence property of the
tetrad fields is used to obtain the contracted relation I"%,

=TI % a great simplification.

From Eq. (3.3), it is clear that when the torsion vanishes
and hence I is symmetric, then I” = I". This presents several
interesting situations.

We note that

?ZA = K’;:(aaK[ e _d/le; ”J)
= (K, ®dK ~°),.

The torsion vanishes iff all tetrad 1-forms K ~ '° are
closed. We consider several topological possibilities.

For example, if each tetrad 1-form is exact, then there
exists a global chart for Msuchthat K ~ " =dy%,a = 1,2, 3,
4 on this chart. Relative to this chart, g may be diagonalized
to i for each x € M. Hence the space-time is effectively Lor-
entzian R *.
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We note that the space-time is time orientable and spa-
cially orientable if it is parallelizable and, hence, we consider
the case where K,(x), the fourth tetrad field, is defined by the
global time function,?' # (x). In this particular case we have
the result that d7 (x) = (K ~')*(x) is the normal 1-form on the
level surfaces of ¢ {x). The torsion tensor then arises due to
any nonclosed forms among the first three tetrad 1-forms
and

3
Y=Y K,edKk ')
b=1

The torsion structure is then most easily treated on orienta-
ble globally hyperbolic?'** space-times whose topology is
M =S X R ' Here, Sis a spacelike orientable (hence paralle-
lizable?*) 3-D manifold which may be taken to be a Cauchy
surface for each global-time value eR '. The question of van-
ishing torsion then reduces to the existence of closed, inex-
act, nowhere-zero global 1-forms on S. If the first cohomo-
logymodule H '(S') = 0, theremustbetorsionor S~ R *inthe
orientable globally hyperbolic case.

In the more general case of a parallelizable space-time
M, the condition H '(M )0 is a necessary but not sufficient
condition for vanishing torsion. Torsion is the rule rather
than the exception for general cases.

IV. VARIATIONAL METHODS
The usual Dirac action®* is
I= — (%9, + impo,

where w is the invariant volume form ( — g)'/?d *x, and
¥ = "y*. Note that »* is the constant Dirac matrix, not
Yix) = K & (x)r”.

From 8%, the Dirac equation results, in the free case,
being

(7(x)3, + im)y = 0.
From &y results the free-adjoint equation,

Y, (@) —imy =0, (4.1)

where V = d + I'involves the Levi-Civita connection. Since
¥ is a general scalar, d, ¥ = ¢, and the current i (x)
= J#(x) is conserved relative to the metric connection,
namely, J#  u(x) = 0.

The structure of the adjoint equation is interesting since
the y(x) matrices undergo tetrad parallel transport,
Vi, 7(x) = 0. In a local coordinate chart, the adjoint equa-
tion is, using Eq. (3.1},

(@ ¥ (x) —im ¢ + (L, — iy x) =0. (4.2)
Again, general covariance is manifest since 9, as a general
scalar, gives d, ¥ = 17/;# and (I" — I"} is a tensor.

Equation (4.2} may be simplified by using the orthonor-
mal congruence property of the tetrad fields which implies
that X hw = O or equivalently, for the 1-forms, that
d*K ~'“ =0, where *is the Hodge dual map. Thus from Eq.
(3.1)and V-K, = 0, wehavethat "%, = I"#_ and the adjoint
Dirac equation is simply

(@, ¥)r(x) —im ¢ =0,
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the obvious generalization of the flat R * equation. Again, a
set of connection coefficients results if a change of tetrad is
used.

V. CONCLUSIONS

In this paper, the isomorphic map of Clifford and Lie
bundles [over parallelizable space-times (M, g)] to arbitrary
coordinate atlases via an on tetrad was used to develop a
fully covariant Dirac spinor theory. The Klein-Gordon
equation contained not only a tetrad affine connection asso-
ciated with the given O *{M ) cross section, but also a spin-
torsion term of the Einstein—Cartan variety. The torsion ten-
sor associated with a smooth parallelizable space-time can
vanish only if (M, g) ~ (R *, ) or H (M }#0, the cohomology
criterion being necessary but not sufficient. In work to be
reported, the vanishing of torsion is shown to be necessary
and sufficient for certain classes of Klein—-Gordon solutions
to exist.

It might be asked why torsion was not seen in previous
generalizations of the flat R * Dirac theory. It is generally the
case that the coordinate derivative d, is tacitly replaced by
the Levi-Civita covariant derivative V,, in most treatments.
Since this connection is torsion-free, no intrinsic torsion
could be obtained by the usual methods. Classical scalar field
theories use the metric connection to construct their Klein—
Gordon equations and no intrinsic torsion is seen. Electro-
dynamics is a theory of differential forms which is metric
independent and, hence, no torsion enters. Einstein gravity
is an intrinsically symmetric theory and any torsion must be
inserted as a subsidiary structure on the space-time.”

Torsion enters spinor theories naturally through the
tetrad map of the Dirac algebra elements. The spin- 3 caseis
treated in work to be reported.
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This paper argues that quantum behavior can be modeled using standard probability theory. To
show this, such a model is constructed in which the Lagrangians associated with different paths
are random. (This random Lagrangian formulation is equivalent to constrained entropy
maximization.) We assume that the random error term varies as a harmonic oscillator over time.
(We attribute this to certain properties of measuring devices.} The result is a formula which
provides a good qualitative description of the n-slit interference experiment—indeed the formula
is quite similar to the formulas of quantum mechanics. Hence standard probability theory models
can describe interference effects so that a quantum probability theory is unnecessary.

PACS numbers: 02.50. 4 s, 03.65 — w, 05.20. — y

INTRODUCTION

Almost all theorists agree that quantum behavior is not
deterministic; hence probability theory must be used to mod-
el it. Many theorists'™ go even further and argue that the
standard probability theory is incapable of modeling quan-
tum behavior. In its place, a generalized theory of probabil-
ity, quantum probability theory, has been developed.

Generalizing the standard probability theory is a dras-
tic step. The works of Kolmogorov* and DeFinetti® have
provided the standard probability theory with strong math-
ematical/philosophical foundations. Since the standard
probability theory has proved adequate in most other fields,
we should avoid generalizing the standard probability the-
ory unless it is necessitated by experiment.

Quantum probability theorists argue that the standard
theory of probability cannot model such well-known quan-
tum effects as the n-slit interference experiment.® This paper
argues, contrary to the quantum probability theory view,
that the standard probability theory can model quantum be-
havior. To support our contention, this paper develops a
standard probability theory model of the n-slit interference
experiment.

To develop such a model, we first look to the principle
of entropy maximization. Suppose a particle has a probabil-
ity distribution over all possible trajectories w, which maxi-
mizes its entropy: — 2 P (w)log[P ()], subject to two con-
traints:

{a) The probability of various trajectories  is nonnega-
tive,

{b) The Lagrangian of each trajectory, averaged over
P (w), gives us the particle’s classical Lagrangian (this pro-
vides some correspondence with classical mechanics).

It has been shown’ that such a model is equivalent to the
following “random Lagrangian® model:

A particle follows that trajectory which minimizes the
time integral of the Lagrangian. However, the experimenter
cannot measure the exact value of the Lagrangian for all
possible trajectories. Hence there is some measurement error
so that the experimenter can only predict the probability
with which the particle follows trajectories. This measure-
ment error is distributed as a double exponential.
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The equivalence between constrained entropy maximi-
zation and the random Lagrangian model suggests that the
random Lagrangian formulation® might be useful in under-
standing particle behavior. We only need to specify how the
random measurement error on a path at time ¢ relates to the
random measurement error on the path at some later time ¢ .

To specify how measurement error changes over time,
suppose we consider the experimenter trying to measure the
position of the particle at time z. Suppose the actual position
is X (¢ ) while the experimenter measures it as X {¢ ). Thus we
haveanerrorof X (¢} — X (¢ }. If the experimenter’s methods
adjust for error over time, they will tend to decrease the
value of this error: X (t ) — X (¢ ). Suppose we model this ad-
justmentforerrorasaforce:F= — k[X™{t) — X {t)].Clearly
this will cause the error in position to vary sinusoidally over
time—first the experimenter gives too high a value for posi-
tion, then too low, then too high, etc. We will incorporate
this adjustment force into the random component of the par-
ticle’s Lagrangian. (This force, of course, will be random
since we do not know the amplitude of the variation nor
what the error is at time ¢t = 0.)

Following these suggestions then, we assume that the
random component of the random Lagrangian is a harmonic
oscillator with unknown amplitudes and starting phase. This
will give rise to a correlation between the Lagrangians of
different paths which will depend upon the difference in path
lengths. We will develop a random Lagrangian model for a
particle choosing a path in the n-slit interference expeirment.
When we insert this correlation between paths into our mod-
el, we get a formula which describes the n-slit interference
experiment. Indeed this formula is very similar to the for-
mula derived by taking a quantum probability theory ap-
proach. Thus a model developed in terms of the standard
probability theory describes the results of the n-slit interfer-
ence experiment. Hence the n-slit interference experiment
does not invalidate the use of standard probability theory in
quantum mechanics; indeed it provides an opportunity to
demonstrate the adequacy of the standard probability the-
ory.

Now there are other ways in which we could have speci-
fied how measurement error varies over time. These will give
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us different results. Thus we are not arguing that the particu-
lar model developed in this paper should replace quantum
mechanics. Instead we are arguing that a standard (non-
quantum) probability theory model, like the one developed
in this paper, can describe the interference effects of the n-slit
interference experiment. This refutes the quantum probabil-
ity theorist assertion about the inadequacy of standard prob-
ability theory and suggests another approach for those inter-
ested in stochastic formulations of quantum mechanics {see
Bohm®, Comisar,'® Braffort and Tzara,'' and Nelson'?).

In the quantum mechanical theory, an entity is viewed
as having a dual wave/particle nature. In my model, the
entity is a particle but its Lagrangian, by virtue of its random
harmonic oscillator error term, is somewhat wavelike. Thus
my formulation does not eliminate quantum-type effects; in-
stead it simply shifts them from the probability theory used
to model the physics to the physics being modeled. This has a
number of advantages. First it is philosophically appealing
to a number of theorists. Second it may suggest testable hy-
potheses. Third it may offer new ways to generalize quantum
mechanics to relativistic contexts.

This paper consists of four sections. The first section
reviews the n-slit interference experiment and why many
theorists feel the standard probability theory cannot de-
scribe it. The second section begins building the random La-
grangian model. The third section considers that model for
various types of correlation. In the fourth section, we postu-
late that the random component of the measured Lagran-
gian is a harmonic oscillator and deduce the resulting corre-
lation. We insert this correlation into our random
Lagrangian model and derive a formula which describes the
results of the n-slit interference experiment. Indeed the for-
mula is very similar to the formula we get from the tradition-
al quantum probability theory model.

1. THE n-SLIT INTERFERENCE EXPERIMENT

Imagine the following idealized experiment with elec-
trons. Electrons are produced at a source S and move toward
a wall with two slits (see Fig. 1). If we install a detection
screen behind the wall, we can record whether or not the
electron hits a point x along the wall. If we close the first slit,
slit 1, then the probability with which the electron hits var-
ious positions x along the wall is given by a bell-shaped dis-
tribution with the maximum at the point x = + id, the
point on the screen directly across from slit 2. Likewise if we
open slit 1 and close slit 2, then P (x) has a bell-shaped distri-
bution with maximum at the pointx = — 1d (see Fig. 2). We
call the probability distribution, when we close slit 1, p{x/2),
the probability the particle hits point (x) on the detection
screen given it went through slit 2. Likewise we call the prob-
ability distribution when we open slit 1 and close slit 2,
plx/1).

Now suppose we open both slits. Then the probability
distribution P (x) becomes a bell-shaped distribution with
maximum at x = 0 and has “superimposed interference
fringes” (see Fig. 3). We call this probability distribution for
two open slits p(x/1,2), the probability the particle reaches x
given it can travel through slit 1 or slit 2.
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FIG. 1. Layout of the 2-slit interference experiment.

Now, as the quantum probability theorists correctly
note, there should be some relationship among p(x/1,2),
plx/1), and p(x/2). In fact, using the standard theory of prob-
ability, we can write

pix/1,2) = p(x/1,(1,2))p(1/(1,2)) + p(x/2,(1,2))p(2/(1,2)).
(1.1)

The quantum probability theorists then implicitly assume
that

pix/1,(1,2) =p(x/1) and p(x/2,(1,2)) = p(x/2). (1.2)
This implies that
pix/1,2) =wplx/1) + (1 — w,)p(x/2), where
w, = p(1/(1,2). (1.3)

According to (1.3), the distribution given in Fig. 3 is a
weighted average of the two distributions given in Fig. 2. But
this is clearly false.

The quantum probability theorists conclude that stan-
dard probability theory, i.e., Eq. (1.1), is the problem. We
will argue that (1.2) and not (1.1) is the problem. This paper
constructs a model in which the Lagrangians associated with
paths from slit 1 to point x are correlated with the Lagran-
gians associated with paths from slit 2 to point x. Now
plx/1,(1,2)) is the probability a particle takes a path from slit
1 to point x given that the Lagrangians associated with all
paths through slit 2 are greater than the Lagrangian of some
path going through slit 1. The distributions of the Lagran-
gians for paths going through slit 2, given they all exceed the
Lagrangian of some path through slit 1, are different from
the overall distributions of the Lagrangians for paths going
through slit 2.

Hence, since the Lagrangian for a path from slit 1 to
point x is correlated with these slit 2 Lagrangians, its distri-
bution is different in the case in which we know that all the
slit 2 Lagrangians exceed some Lagrangians for a path
through slit 1 vs the case in which the slit 2 Lagrangians
could be larger or smaller than the slit 1 Lagrangians. Thus
plx/1,(1,2)) is different from p(x/1), the probability, given we
don’t even allow for paths through slit 1, and hence have no
information about what those slit 2 Lagrangians might have
been. Thus assumption (1.2) need not be true.

Later sections of this paper construct the model out-
lined above. We consider four special cases of this model: in
the first two cases, assumption (1.2) will be true; in the last
two cases, it will be false. We will find that for the case which
best describes the n-slit interference experiment, assumption
(1.2) is false. Hence we cannot reject assumption (1.1); hence
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n(x/2) p(x/1)
1 'l
1 X=- Z Go= xl
S' bx= 0 _S'
a» L x=+ —,1; Jd = X2 <
v

FIG. 2. Results with only one slit open.

the argument against the standard probability theory fails.

Define o, = p{x/k,{1,2))/p(x/k } so that &, measures
the degree to which assumption (1.2) fails. Then we can write
(1.1} as

2
pix/1.2)= Y plk /(1,2))awpix/k). (1.4
k=1
For the general n-slit interference experiment, we have

px/1.2,...n) =Y plk/1,2,...nja,px/k). (1.5)

k=1
Now a, #1 is equivalent to saying that (1.2) is false. For the
quantum probability theorists to reject standard probability
theory, they need o, = 1. This paper develops models in
which a; #1 in general.

2. THE GENERAL MODEL

Let Pbe the set of all paths by which the particle can get
from the source to the detection screen. Define (k,8) to be
that path in which the particle moves in a straight line from
the source to slit & and then moves at an angle & from the
perpendicular to the detection screen (see Fig. 4). Feynman
and Hibbs'? similarly considered the set of all paths, P. We
define the smaller set of paths, P® = ((k,0 )|k = 1,2,...,n;

— m/2<8<7/2). For simplicity, we ignore all paths in P
which are not in P% . (Thus we exclude “wobbly” paths from
source to screen as well as “ricocheting” paths. These could
be included in a more thorough treatment.)

Let L (k,0) be the time integral of the Lagrangian asso-

p{x/1,2)
1
1 X=- —,)- ¢ = Xl
S * x= 0
- l =
) x=+ 5 1 = X,
FIG. 3. Results with both slits open.
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1.
x== 5 d = %)

ciated with path (k,8 ). We occasionally refer to this as the
Lagrangian of path (k,6 ). By Hamilton’s principle, the parti-
clechooses that path (k,6 ) minimizing L (k,6 )overall (k,6 )in
P.

Although L (k,0} has a specific value for each path the
particle may take, we assume—consistent with the spirit of
the Uncertainty Principle—that the experimenter cannot
measure it exactly. Hence because of random measurement
error, L (k,8) is a random variable. Following Domencich
and McFadden'* and Litinas,'® we assume'® that

Lkb)=V(kO)—ekB),
where €(k,0) is a random variable with the distribution
Prie(k,0)<a)=e

This is the double exponential or extreme-value distribution.
It deviates somewhat from the normal distribution, al-
though it is a good approximation for many purposes. It is
more analytically tractable for determining the distribution
of the minimum of L (k,6) than the normal distribution.

The probability of a particle taking a path which goes
through slit k£ and then proceeds at an angle 8 is the probabil-
ity the path (k,6 ) has the smallest Lagrangian of all paths,
ie.,

_ o lasstk,o))

P(k,6)=Pr(L (k0 )<m§n(L (€))-

If we require that the particle go through slit &, then the
probability of a particle taking slit kK and proceeding at an
angle @ is the probability the path (k,8 ) has the smallest La-
grangian of all paths going through slit %, i.e.,

Py{k,9) = PriL (k.6 )<min(L (k£ )

FIG. 4. Path (k, 6).
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Now if we let (k,6, (x)) be that path which goes to slit &
and then proceeds from slit £ at an angle causing it to hit
point.x, we can write down the equations for P {x) given n slits
are open and P (x) given only slit & is open. Thus given 7 slits
are open, p(x/1,2,...,n) is the probability that one of the n
paths reaching x: (1,6,(x)),...,(n,8, (x)) has the smallest La-
grangian, i.e.,

px/1,2,..n) = Pr(min(L (k,6, (x)))<min(L ( j,& ))).
3 P33

Since there is a zero probability of two different paths obtain-
ing the same minimum, this becomes

px/1,2,m) = ;Pr(L (kO (x)<minL (/& ))). (2.1)

If only slit & is open, then p(x/k ) is the probability that

Pr(L (k,0, (x))<min, . (L (/,£))

(k.,0, (x)) has the smallest Lagrangian of all paths going
through slit %, i.e.,

plx/k)= Pr(L (k.0 (x)ngin(L (k,§))). (2.2)

We can also determine the probability the particle goes
through slit k given that » slits are open. It is the probability
that one of the paths going through slit X has the smallest
Lagrangian, i.e.,

plk/1,2,...n)= Pr(main(L (k,5))<mi§n(L (j,§))). (2.3)
Thus we can write Eq. (1.5) as

P/1.2,m) = S plk /1,2, n)a,plx/k), (2.4)

k=1
where a, is given by

™ Pr(min, (L (k.8)<min, . (L (7, ))\Pr(L (k,6, (x))<min, (L (k& )))

The next section specifies various correlations among the
€(k,8)’s, which give rise to different values for the a, ’s.

3. FOUR CASES OF CORRELATION

We consider four cases

Case I: independence

Suppose all €(k,8 )’s are independent. Then

o= Vike)

2 ffi/zn/z e Vike) dé

Proof: See Domencich and McFadden'® and Litinas. '’

Using Eqgs. (2.1)—(2.3), we can compute the probability
distribution for x, given all # slits are open and given only
oneslitis open. We use (2.5) to compute the resulting value of
a,. We find ¢, = 1. So we would expect assumption (1.2)
and thus (1.3} to be correct if the random Lagrangians were
uncorrelated.

P{L%ﬂ»@%mLugn)=

Case ll: slit correlation

Suppose there is a correlation p(k ) among the random
Lagrangians in all paths going through the same slit £ (for
k = 1,2,...,n). However, paths going through different slits
have uncorrelated Lagrangians. Then we find

Pr(L (k,8 K"}?’(L (J:& )))

e Tfnk,ei(fe —VikE) dé)- otk )
s, fe — Vbl ge = VUE dE )~ oK) dg ’
where V' (k,0) = V (k,0)/[1 — o(k )] and
otk)=1—[1—plk)]'"?

Proof: See Litinas'® and Block and Marschak."’
We can compute the probability distribution for the particle
reaching x, given all n slits are open and given only one slit is
open using (2.1)—(2.3). If we then use Eq. (2.5) to find «;,, we
find that @, = 1 for all k. Thus correlation among the La-
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(2.5)

—
grangians in and of itself will not cause Eq. (1.2) to be violat-

ed.
We now consider a case of correlation which does vio-
late assumption (1.2).

Case lll: angular correlation

Suppose there is a correlation p(¢ ) among the Lagran-
gians of all paths which emerge from the slit at the same
angle 6 towards the perpendicular. In other words, €(,6)
and €(k,0 ) are correlated forj# k. On the other hand, thereis
no correlation among Lagrangians for paths emanating from
the same slit. With these conditions, we get a formula similar
to that of Case II, namely,

Pr(L (k,0)< min (L (j,£)))
113
e~ V‘[k,e)(2;= e V‘(j.B)) — of6)

= . P — ’
22:1 J’f.’*V (k.Gl(zjr}:le—V (1,0)) G(Bidg

where V *(k,0)=V(k,0)/[1 — 0{f)] and
ol6)=1—[1—p(@)]""

Proof: See Litinas'® and Block and Marschak."”
If we now use Eqgs. (2.1)—(2.5), we will find that we do not get
a, = 1. This is because p(x/k,1,2,...,n) is a function not only
of ¥V *(k,0, (x)) but of all the other V' *(j,6;(x)), j#k, values
with which there is correlation. On the other hand, p(x/k ) is
given by

p(x/k) =e V(kﬂk(xn/j'e— Vi(k,6) de

and thus p(x/k ) does not depend upon V *{ j,8;(x)) for j#k.
If we compute «,, we find that it is given by
a, = 6(k,0, (x))/E (6),
where & (k,0), the correlation shift parameter is given by
ok, 0) = (1 + e~ (Vr0)— Vik 8111 = "“"”) -
Fk
and where
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Sr_, S8k,0)e Ve 40

B = e
k=1

The correlation shift parameter measures the impact of cor-
relation. The amount by which this affects the probability of
the path is the ratio of this correlation shift parameter to the

average correlation shifts affecting all paths.
Now a, willonlyequal 1,in general, if §(k,8 )is the same

for all angles 8, i.e., if V'{j,0) and p(0 ) were the same for all

angles 6. Since this is usually not the case, a, # 1. Thus as-
sumption (1.2) is false, and the argument against the stan-
dard theory of probability is invalid.

We can make a number of other observations, which are

detailed in Appendix A. These show that positive correla-
tion tends to decrease the probability of a path being taken

while negative correlation increases the path’s probability of

being taken.
We now look at one final case of correlation which will
also violate assumption (1.2).

Case |V: bivariate position correlation

In Case IV, there is a correlation p(x;i,j) between the
paths (5,6, (x)) and ( ,6;(x)) for all ij = 1,2,...,n and for all x.
To develop the formulas for this case, we first develop the
solution for the case in which p(x;i,j) = p(x) for all / and j.
Then we approximate the solution to get a formula for the
case in which p(x;i,j) varies for different / and j.

Let D be the distance from the slits to the detection
screen. Let x, denote that point on the detection screen di-
rectly across from slit & (see Fig. 5.) Then we know that 8, (x)
satisfies tan[@, (x)] = + (x — x, )/D. Hence for the path
(k,0), an integration of 40 from — 7/2to + 7/2 corre-
sponds to an integration of f, (x) dx from — « to + «
(where fi (x) = {1 + [(x — x,)/D1*} ~'). The density f, (x) is
bell-shaped like the density in Fig. 2.

We now suppose that all paths (k,x) which terminate at
the same point x have Lagrangians which are correlated with
correlation coefficient p(x). Thus €( j,x) and €(k,x) are corre-
lated for j # k. Under these conditions, we have

_ 4(1,x)
E,, (6(x))

a,

1 —ox)in{1 + [p(x/2)/p(x/1)]}

J

stT K XK

mlx;u

v

FIG. 5. Angle 6, (x).

Pr{L tcx)<miniL (/)
iy
e~ | 4 v(k,x}( 2_,’”: le — V*(j,x)) — U(xy‘k(x)
2:= Se~ V*(k,x)( zjn: e” V'U,X)) 70(xy'k(x) dx ’

where V *(k,x) = V{k,x)/[1 — o{x)] and

olx)=1—[1 —p(x)]'"">.
Proof: See Litinas'® and Block and Marschak.!” In the
case in which ¥ (k,x) = V for all k and x, we find that

p o)
T E (n— )
O3 Sln) ) sx)

30 fx)dx

which is similar to what we had in Case II1. Thus this case
also violates assumption (1.2).

These are the formulas for position correlation. To use
them to develop formulas for bivariate correlation, we first

consider the » = 2 case. In this case, the correlation shift
parameter &(1,x) is given by

5(1’x) — (1 + e[V(LX) — Vi2.x)]/1 — mxn) vam_
We first note that p(x/2)/p(x/1) = " = ¥*>~ Hence
5(1,x) = {1 + [ p(x/2)/plx/1)]"/0 = o=} =X We now ex-
pand &(1,x) in a Taylor series about o{x) = 0 and get
plx/2)
pix/1)

(where E({n—"™)

a

S(lx)=1— o(x)ln(l + ) + (terms to be neglected).

Thus

1= sotx){In[1 + plx/2)/plx/1)Ig,lx) + Inl1 + pl/1)/p(x/2)]g,x)} dx

e )
sV, (x)dx

WeletB,(1,2) = 1/E,, ,,(8(x))sothata, = 3,(1,2)5 (1,x). This
gives us the following equation for p(x/1,2):

8ilx) =

2
px/12)= ¥ plx/jip(j/1,2)a;

i<

= 1(B,(1.2p(x/1) + By(1,2)p(x/2)
— ox)}{B,(1,2)In(1 + [p(x/2)/p(x/1)])p(x/1)
+BaA12)In{ 1 + [p(x/1)/plx/2)lpix/ 2)3])
(3.1)
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Now the obvious way to generalize this model is to look
at the correlation shift parameter for an arbitrary n, i.e.,

n - otx)
- VLX) = VUix)/ (1 — otx))
8(1,x) (1 +,§q )
J#1
However, this would imply that all paths leading to the same
point x have the same correlation with one another. We want
to allow the n paths to have different correlations with one
another. This requires that we take a different approach.
First define the Lagrangian associated with a slit j to be
the smallest Lagrangian of all paths going through slit j, i.e.,
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L{j=

Now the probability that path (k,x) has the smallest Lagran-
gian is the probability that (1) slit & is one of the two slits with
the smallest Lagrangians of all » slits, (2) of these two slits,
slit k¥ has the smaller Lagrangian and the path (k,x) has the
smallest Lagrangian of all paths through slit 4.

In other words,

mm[L (JX)]-

pllik,x)/(1,2,...,n))

= 3 Sk

j=1s<j

eI JsS)/(1,..,1)), (3.2)

where the notation ( j,5) indicates that the particle goes
through either slitj or slit s. We will now assume that p((k,x)/
(/$)(1,...,n)) = pllk,x)/(j.5)), i.e., that, given we know the
particle will go through either slit j or slit s, we can ignore all
the other slits.

Let’s compare this assumption with the quantum prob-
ability theorist assumption, (1.2), which stated that p((k,x)/
k,(1,...,n)) = p(lk,x)/k ) = p(x/k ). Their assumption said
that, given we know the slit with the smallest Lagrangian, we
can ignore all the other slits in determining the probability of
path (k,x). Our assumption, (3.2), says that given we know
the two slits with the two smallest Lagrangians, we can ig-
nore all the other slits in determining the probability of path
{k,x). Thus assumption (3.2) is a fairly straightforward gener-
alization of assumption (1.2).

Now clearly, p((k.x)/(J,s)) = O if j#k and s#k. Like-
wise, if we assume that all pairs of slits have an equal chance
of being the slits with the two smallest Lagrangians, we get

pl(J$)/1,2,...,n) = 2/n(n — 1). With these substitutions, (3.2)
becomes
plk,x)/(1,...,n) = ( 1, Ep((k,x)/u,k))
T
Now

pkx)/ k) = plx/k, 1.k Dplk /jk ) = § plx/k,( 1,k ))-

Since we know that

pix/k,(Jk ) = Bi(J.k )plx/k ) — olx; .k Jplx/k )
XIn[1 + p(x/j)/pix/k )1},

we have

pltkx)/(jik ) =} Bie ik ){plx/k ) — olx; j.k Jp(x/k )
XIn{1 + p(x/j)/px/k )]}

So we get

1))[ px/k) S Bk )

pllikx)/(1,...,n))
n{n — =
j#k

— plx/k) zlﬁku,k otk )m( + lz(x//;jc)))]

JEk
But
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P/, o) = z k)1, m)

n(n J_l

J#Ek

= plx/k)

j#Ek

- 2 pix/k)S B, ok Jotx; jk )m( px/j) >]
We can rewrite this as

plx/1,...n) = (n(nl )( Zp(x/k ) Zﬁk Jk

i+
j#k

—22 Zax Jok)—

k=lj<k

+ Bk )p(x/j)ln( 1+

[b’k (Jok Jplx/k )ln(l + lz(X//]i)))

M)] (3.3)
pix/j)
This is the bivariate correlation model.

We now specify a form for the correlation, p(x; j,k ),
which will give us a form for oix; j,k ). When we insert this
into our bivariate correlation model, the resulting formula
predicts interference fringes.

4. A MODEL OF THE n-SLIT INTERFERENCE
EXPERIMENT

We have discussed fairly simple kinds of correlation: all
paths emerging from the same slit being correlated with con-
stant correlation; all paths proceeding from the same angle 8
to the perpendicular being correlated with constant correla-
tion. We now consider a physically more intuitive form of
correlation.

Firstlet L (j,x;t)bethe Lagrangian of path ( j,x)attimer.
[Thus L (j,x;t ) equals the kinetic energy minus the potential
energy.] Similarly define the known and random compo-
nents of the Lagrangian, ¥ (j,x;t} and €(j,x;t ), so that

L{jxt)=V{jxt)—eljx;)

If the path from source .S through slitj to the point x starts at
time ¢t = 0 and ends at time t = T, we also have

L(m:f L{jxit)de,
Vu,x)=f0 V(joxit) dt,

eljix) = | " eljixit) .

We will use this notation in defining a model for €[ j,x) which,
in turn, implies a form for p(x; j,k ).

Nelson'? derived the Schrodinger equation from a mod-
el in which a particle’s motion consists of a classical compo-
nent reflecting the macroscopic Newtonian physics and a
random component associated with frictionless Brownian
motion. Qur model is somewhat similar.

In our model, we think of the classical component of a
particle’s motion as resulting from the known component of
the particle’s Lagrangian, ¥V (j,x;t). We view the unknown
component as reflecting the random difference between the
known, measured Lagrangian and the actual Lagrangian.
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Now our methods of measurement tend to reduce the
difference between the measured position of a particle and its
actual position. Suppose we represent this as a force,

F= — k[X(t) — X" ()], where X(r ) is the actual position of
the particle at time ¢ and X™ (¢) is the measured position. If
X™ (t) changes very slowly relative to X(¢} — X™ (¢ ), then we
can define z(r ) = [X(¢) — X™ (¢)] and assume z(t } is indepen-
dent of X™ (¢ ) and thus of ¥( j,x;t ). Hence F = — kz(t) gives
rise to a simple harmonic oscillator force. The kinetic energy
of the oscillator is k4 *( j,x)cos*[(k /m)'/*t + Ja], where

A?(jx)and o are unknown constants. The potential energy
isikA *( j,x)sinz((k /m)'’2t + la). Hence the harmonic oscilla-
tor Lagrangian, €(j,x;¢) which is the difference between the
kinetic and the potential energy, is given by

€l jx;t) = kA *(jx){cos?[(k /m)' %t + la]

— sin’[(k /m)""’t + la]}

= 1kA ?( j,x)cos [2(k /m)""*t + a].
Now, 4 (j,x) is, of course, related to the energy of the oscilla-
torby4 = (2E /k)'/?, where Eistheenergy. Hence, when the
particle leaves the source S, a certain amount of energy goes
into its harmonic motion. But since we do not know how
much energy goes into its harmonic motion, E and thus
A %(j,x) are random variables with possible values ranging
from zero to infinity. Likewise we do not know «, the phase
in the harmonic motion, at which the particle leaves source
S. Since a can assume any value from O to 27, cos[2(k /
m)''?t + a] can assume any value from + 1to — 1. Hence
€(j,x;t ) can assume any value from — « to + . By appro-
priately choosing the probability distribution we assign to
A *(j,x) and @, we can give €( j,x;t ) many possible probability
distributions.

We present a graph of €( j,x;¢ ) in Fig. 6. As Appendix B
shows, given this model for €[ j,x;t ), the correlation between
€l j,x) and €(k,x)—which is also the correlation between
L (j,x)and L (k,x}—is given by

p(x/lZ)-%( (x/1) + p(x/2)

plx; k) = a, cos{C [d;(x) —

172
where C = i(i) ,
v\m

di(x)1},

where d; (x) is the length of path ( j,x), d, (x) is the length of
path (k,x), v is the speed at which the particle travels along
the path—assumed constant for simplicity, a, is the correla-
tion between 4 *(j,x) and A %(k,x).

We intend to use this formula for p(x; /,k ) in (3.1) and
(3.2). Todoso, recallthato(x; j,k ) = 1 — [1 — plx; j,k NV If
we make the approximation oix; j,k ) = [p{x; j,k)/2 In 2],
the resulting formula—as Appendix C(A) shows—actually
improves the degree to which formulas (3.1) and (3.2) ap-
proximate the analytical random Lagrangian formulas of
CaseIV.So wenow replace o{x; j,k by [1/(2 In2)] p(x; j,k ) in
(3.1} and (3.2).

Consider the constants 3, . By definition, we have

pn1= - [P+ £
+1n ( ;( //];)))g,»(x)] dx] o

Now using elementary ideas from physical optics, we know
that [d;(x) — d, (x)} is approximately equal to x/ /D, where i
is the distance between slits £ and j (see Klein, Ref. 18, p.
187). Thuswecaninsertp(x; j,k ) = a4 cos[C (A /D x]intothe
expression for B, (j,k ). Since the mass m is small, C is very
large and the cosine oscillates between + 1 and — 1 much
more rapidly than In[1 + p(j,x)/p{k,x)]g, (x) varies as a func-
tion of x. Hence the integral is approximately equal to zero.
Thus B, (j,k)=1and 2} _, B, (j,k})=(n — 1)foralljand

k#j
k.This simplifies formulas (3.1} and (3.3) considerably. For-
mula (3.1) with this choice of correlation becomes

(p(x/l)ln[l +px/2)/pix/1)] + plx/2)In[1 + p(x/1)/p(x/2)]

2In2

Formula (3.3) with this choice of correlation becomes

P/, ) = i{ S plx/k)

k=1

) 0s{C [d,{x) — dyfx]] }). (4.1)

_( a, )[ (P(x/k In[1+ pix/j)/px/k)] + pix/j)In[1 + p(x/k )/p(x/j)]
K=<k

n—1 2In2

Now suppose that the 7 slits are fairly close together. Then
for many values of x, [p(x/k )/p(x/}}] is fairly close to 1. Ap-
pendix C(B) shows that we can approximate p(x/k)

XIn[1 + p(x/j)/plx/k )] + plx/Mn[1 + p(x/k )/p(x/j)] by

2 In 2[p(x/k )p{x/j)]'/? with an error of at most 2.7% if
L<plx/k )/p(x/j)<2. We will call this the “close slit” approxi-
mation. If we make the approximation, (4.2) becomes
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)cos{C[dj(x)“dk(x)]}”- (4.2)

plx/1,2,...n) =

%[ En‘,p(x/k)
- (n — 1) Z Z[Px/k p(x/j)]"?

k=1j<k
Xcos{C[czlj(x)—dk(x)]]]. (4.3)

It is fairly clear that this formula would give the interference
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phenomena described in Fig. 3 even if p(x/k ) were bell-
shaped as in Fig. 2 for all k. This shows that (4.3) and thus
(4.2) predict interference effects.

Now let’s compare {4.3} with the quantum mechanical

=2 ebn)( 5 p)

o
(

= norrn
k=1lj<k

= Koorm Z,PX/k) +2 3 > [plx/jlplx/k )] cos| B j.x)

k=lj<ck

where K ..., is a normalizing constant. Let

B(j.x) = Cd;(x) = (1/v)(k /m)'/*d,(x). [Thus B (j,x) is pro-
portional to the time needed to traverse path (j,x).] Let
a,= — 1.[Thus 4 *(j,x)and 4 *(k,x) are negatively correlat-
ed.] Then the only difference between (4.3) and (4.4) is that
(4.3) assigns a weight of [1/(n — 1)] to the interference terms
while (4.4) assigns a weight of 2 to the interference terms.

Of course, we can get different constants in (4.3) by
making different assumptions about the distribution of
€( j,x). The important point is that our model is qualitatively
similar to the quantum mechanical one and thus will predict
similar qualitative effects. Hence this approach to the behav-
ior of the particle may provide a powerful alternative formu-
lation of quantum theory. We leave developing such an alter-
native theory to other work.

In summary, this paper has shown that:

(1) Equations derived from the random Lagrangian
model with a harmonic oscillator model of measurement er-
ror lead to a qualitatively plausible model of the n-slit inter-
ference experiment. This establishes that it is possible to
model quantum behavior using standard probability theory.
Hence the quantum probability theory arguments must be
revised.

(2) Many researchers have worked on the idea that one
can duplicate quantum behavior by postulating a particle as
subject to frictionless Brownian motion.®~'> (Many other pa-
pers discuss related ideas.'®~>°) Our paper provides a dis-
tinctly different approach to this basic idea. Instead of postu-
lating frictionless Brownian motion, we postulate
measurement error, giving rise to a harmonic oscillator La-
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S Q%) +2 3 T 0UxIQ k) cos[B ()

AN TAN
\_/

solution to this problem. For the quantum mechanical solu-
tion, we would define a wave function for each path,
& (kx) — Q (k,x)e’®**  We have

- B(k,x)])

—B (k,x)]), (4.4)

—

grangian with unknown amplitude and initial phase. The
result is a formula which does imply interference effects and
is, in many ways, quite similar to the formulas of quantum
mechanics. We also saw that this approach was very closely
related to the principle of entropy maximization.

CONCLUSION

Most physicists currently feel that quantum behavior
such as the n-slit interference experiment requires an aban-
donment of the standard probability theory. This seems
rather peculiar because other fields, while recognizing the
necessity of modeling uncertainty, have found the standard
probability theory perfectly adequate for their uses. This pa-
per argues that quantum physics does not, in fact, require an
abandonment of standard probability theory; instead we
merely require a more sophisticated use of standard prob-
ability theory.

Our argument proceeds in two steps:

(1) We first examine the assertion that standard prob-
ability theory cannot model phenomena in which p(x/1,2)
#plx/1p{1/1,2) + pix/2)p(2/1,2). To show that this asser-
tion is false, we develop a model in which the particle follows
that path minimizing the time integral of the Lagrangian.
However, although the particle’s behavior is deterministic,
the experimenter is unable to measure the Lagrangian exact-
ly and hence can only predict the probability with which the
particle follows various paths. This model is equivalent to a
constrained entropy maximization principle.

We show that when there is correlation among the La-
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grangians, the random Lagrangian model generally predicts
that p(x/1,2)#p(x/1)p(1/1,2) + p(x/2)p(2/1,2). This refutes
the assertion that a standard probability theory model can-
not model quantum behavior.

(2) We now proceed to develop a random Lagrangian
model which provides a qualitatively reasonable model of
the n-slit interference experiment—an especially popular ex-
ample of quantum effects. To do this, we need to develop a
model for the random component of the Lagrangian. We go
back to work by Nelson, Tzara, Braffort, Comisar, and
Bohm, which suggests that we can think of a particle as hav-
ing two kinds of motion: (1) a classical motion obeying New-
ton’s laws and (2) an oscillatory Brownian motion compo-
nent. These authors have shown that such a
conceptualization leads to results consistent with the Schro-
dinger equation.

We use their conceptualization to form our model of the
random component of the Lagrangian. We assume this ran-
dom component is a harmonic oscillator Lagrangian where
the amplitude and starting phase of the oscillator are un-
known. This implies that the correlation between two path
Lagrangians is proportional to the cosine of the difference in
path lengths. When we insert this correlation into our ran-
dom Lagrangian model, we get a formula which provides a
model of the n-slit interference experiment. Indeed under
certain conditions, for example, the distance between slits
being fairly small, the formula is very similar to the formula
we would get from the traditional quantum probability the-
ory approach.

Thus we have established that a standard probability
theory model can model quantum effects—at least in the
case of the n-slit interference experiment—contrary to the
arguments of quantum probability theorists. Since the for-
mulas given by my model are not identical to those given by
the traditional quantum probability theory approach, there
are some obvious ways to test the formulas to see which is
more descriptively valid. But this paper is not concerned
with establishing which one of the many possible standard
probability theory formulations of quantum behavior is
“best.” We are only concerned with showing that such a
formulation is possible. We leave other speculations to later
work.

APPENDIX A

We will show that positive correlation decreases a
path’s probability of being followed while negative correla-
tions tends to increase a path’s probability.

(1) Suppose L (k,0) is positively correlated with other
Lagrangians whose average value tends to be pretty small.
Then there are two cases:

(a) L (k,6 ) happens to be pretty small. However, because
it is positively correlated with other paths, these other paths
also have Lagrangians which are smaller than average. Since
these other paths have very small Lagrangians on average
anyway, it is very probable that their Lagrangians will be less
than L (k,0 ). Thus the probability of the particle following
path (k,8), given L (k,0) is small, is less than if L (k,0 ) were
uncorrelated with these other paths.
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(b) L (k,0) tends to be large. In this case, those other
paths with which it is correlated have larger than average
Lagrangians too. However, since their Lagrangians are
small on average, they may still be less than L (k,6).

Thus it would appear that being positively correlated
with paths of small ¥ { j,£ ) tends to decrease the probability of
the particle following path (k,6 ). Likewise we would expect
that being negatively correlated with such paths would in-
crease the path’s probability. We can confirm these conjec-
tures by looking at the formula for §(k,8).

(2)If V(k,6) =V for all k and all §, then ¢, is propor-
tional to ()~ ?®™), Thus if o{6, (x)) is larger than all other
correlations, a, tends to be less than 1. Furthermore, o,
decreases as the number of slits, n, increases. Hence high
positive correlation reduces a path’s probability. Converse-
ly, if {0, (x)) is smaller than all other correlations, «, tends
to be greater than 1. Thus low negative correlation increases
the path’s probability.

Why is this the case? If L (k,6, (x)) is positively correlat-
ed with the Lagrangians associated with paths from other
slits, then L (k,8, (x)) will tend to be higher than V' (k,8, (x))
when those other paths tend to be larger than their V’s. Giv-
en we know that the particle is coming through slit k, we
know that the Lagrangian of all paths not coming through
slit k are all larger than the Lagrangian of at least one path
coming through slit k. Hence the Lagrangian associated
with paths not coming through slit £ tends to be somewhat
larger than normal. Thus L (k,8, (x)) tends to be larger than
normal. Hence the probability L (k,8, (x)) is the smallest La-
grangian is less than usual. Hence the probability the particle
takes path (k,0, (x)) is less than in the case of no correlations.
Hence a, is less than 1.

Now suppose L (k,0, (x)) is negatively correlated with
the Lagrangians associated with paths from other slits.
Then, given that we know the path goes through slit &, we
know that Lagrangians for paths not going through slit k are
higher than their average. Thus L (k,0, (x)) is smaller than
normal. Hence the probability of path (k,8, (x)) is larger than
in the absence of correlation. Hence a, exceeds 1.

Thus in either case, negative correlation increases a
path’s probability whereas positive correlation does just the
reverse.

APPENDIX B

Let d,(x) denote the length of the path from the source S
to slit 1 and then to point x on the detection screen [i.e., the
length of path (1,x)]. If we assume all particles travel at the
same speed v, then the time it takes to travel path (1,x) is just
d,(x)/v. Let time t = 0O be the time at which the particle
leaves the source .S. Then the Lagrangian of the path (1,x) is
just

d(x)/v
L(1,x) =f L(1,x;t)dt
0

Wx)/v
:J-d [V(l,x;t) — ellx;t)] dt
0
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= V(Lx) — kA (1,

ixl/o k12
Xf cos[Z(—) t+ a] dt
o m

= V(1,%) - Jimk )"/ *(1,x)

X {sin [2(£)m—d% + a] — sin(a)]

m

= V(LX) — imk)'"*4*(1,x)(2)

><cos[(£->mé—lm + a]sin[(i)l/z%()c—)]. {B1)

m v m

Now the Lagrangian of path (2,x) is, similarly,

L(2x)=V(2,x)—}(mk)"/?4%2,x)

o (£ ) )
(B2)

We now want to compute the correlation between the two
Lagrangians. Since both A *(1,x) and @ are random variables,
we will have to integrate over both of them.

The correlation between L (1,x) and L (2,x) is given by

J

plx;1,2) = Cov(L (1,x),L (2,x))

~ [Var(L (10)VarlL (2,x)]* (B3)

Now
Var(L (1,x)) = E (4 *(1,x))}(mk )sin*[ Cd, (x)]
xL cos?[Cd,(x) + a] da
— E*(A4%(1,x))j(mk )sin*[ Cd, (x)]

X(L cos|[Cd \(x) + a] da)2

where C = (1/v)(k /m)"/2.
Also
Cov(L (1,x),L {2,x}))

— E (L0 o022 sin (G x)sin] Cafx)
xL cos[ Cd,(x) + ] cos(Cdyfx) + a] da
_E(ALx)E A 2(2,x))(mTk)sin[Cdl(x)]sin[Cdz(x)]
XL cos[Cd,(x) + a] da J; cos{Cd,(x) + a] da.

Since f,cos[Cd,(x) + a] da = 0, the variances and the co-
variances simplify considerably. We get

E(A%{1,x)4 *2,x))§, cos[Cd,(x) + a]cos[Cd,x) + a] da

pix;1,2) =

Now
cos[Cd,(x) 4+ a]cos[Cd,(x) + a]
= J(cos{ C [d,(x) — dy(x]]}
+ cos [C(d,(x) + dy(x)) + 2a]).

When we integrate this expression over a, the second term
vanishes and we get 7 cos{ C [d,(x) — d,(x)}}. When we inte-
grate §,cos’[Cd,(x) + a] da, we get 7. Finally let a, be the
correlation between A (1,x)and A %(2,x) and suppose this cor-
relation is independent of d,{x) and d,{x). Then we can write

px;1,2) =g, cos{Cld,(x) — dz(xm,
where C = {1/v)(k /m)'/2. {B4)

APPENDIX C

(A) We approximate o{x; j,k)=1— [1 — p{x; j,k)
linearly with Cp(x; j,k ) where Cis some constant. To choose
C, we recall the original analytical formula for p(x/1,2) in the
case in which p(x/1) = p{x/2). Thus we have

P(X/I,Z) ZP(X/l)(Z)“ — plx;j kN2 - 1‘

Now our approximation formulas is

]1/2
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{E %4 %(1,x))E %4 %2,x))S, cos’[Cd,(x) + a] daf, cos*[Cd,(x) + a] da}'’/?’

r
plx/1,2) = pix/1)[1 — olx; j,k )In 2].

The following table compares the two formulas at different

values of p(x; j,k ):

plx; j,k ) Exact formula Approximation formula % error

1 050 0.31 38%
0 1 1 0%
-1 1.33 1.29 3%

If possible, we would like to choose C so as to decrease the %
error associated with p(x; j,k ) = 1 without increasing the %
error too much forp(x; j,k}) = — 1. Wechoose C=1/21n 2.
This formula gives 0.5 at p(x; j,k ) = 1, L at p(x; j,k ) = 0, and
1.5atp(x; j,k) = — 1.1ts % erroris 0%, 0%, and 13%. This
is the formula which we use in the paper.

(B) Our task is to approximate p(x/j) In[1 + p(x/k )/
px/)l + plx/k ) In[1 + px/j)/plx/k ) by elp(x/p(x/k )]'/2.
First we define the ratio » = p(x/k )/p(x/j) and rewrite our
two formulas as: p(x/j){In(1 4 7) + rIn[1 4 (1/7)]} and
ap(x/j)(r)"/2. We choose a so that the two formulas are equal
when r = 1. Hence a = 2 In 2. We now compare the differ-
ence and percent difference between the two formulas as we
vary r.
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r px/N{In(l + ) + rin[1 + (1/7)]
1 0 px/j)
3 (0.015) px/))
: (0.026) plx/)
2 (0.051) pix/j)
3 (0.152) p(x/))
4 (0271) plx/j)

In(1 + 7+ rIn[1 + (1/7)] — 2 In2)(r)"/2
In(1 4+ 7 +rin[1 4+ (1/7)]

0%
0.7%
1.5%
2.7%
6.8%
10.8%

Because of the symmetry of the formula, the error for » = v is the same as the error for » = 1/v. Hence we only compute values

of r equal to 1 or greater.
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The geometric foundations of the integrability property of differential
equations and physical systems. I. Lie’s “function groups’’®
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This series of papers will attempt to discuss in a systematic way when the dynamical differential
equations of a physical system have the “integrability” property. This first paper contains two
topics: A description of some general properties of “function groups” and the related geometric
structures of Poisson-cosymplectic manifolds; and the Lax representations for differential
equations as a sort of “quantization” of Lie’s “function groups.” The general geometric setting of
the “integrability” material in terms of the theory of Ehresmann pseudogroups is also described.

PACS numbers: 02.30.Hq, 02.20.Sv, 02.40. + m

1. INTRODUCTION

Current thought in physics is that there are two extreme
types of differential equations (and physical systems): inte-
grable and chaotic. Examples of the former are what Whitta-
ker' calls the “soluble” problems of analytical mechanics,
the free quantum fields (and certain simple types of one-
dimensional interacting fields, like those associated with the
sine—~Gordon equation), and certain systems to which the
Bicklund or inverse scattering method applies. In the nature
of things, it is much harder to give examples of systems
which are at the other, “‘chaotic” extreme, and which can be
analyzed precisely enough to formulate what should be
meant mathematically by the very term ‘“‘chaotic behavior.”
(The models of Lorenz” and Feigenbaum? are those which
are of greatest current interest.) In this series of papers I will
concentrate on the task of discussing various geometric
structures which seem to underly the “integrability” proper-
ty.

Now, in the post-1965 work on “integrability,” the
term mainly refers to the existence of some algorithms or
procedures for finding a complete set of constants of motion
and/or an explicitly constructed linearization (such as the
“inverse scattering method”). In the 19th and early 20th cen-
tury, Abel, Jacobi, Liouville, Lie, Fuchs, Darboux, Kowa-
lewska, Painlevé, Picard, Schlesinger, Vessiot, and Drach
were leading mathematicians who pursued various ramifica-
tions of this integrability idea. A key work in this tradition
for what I want to do in this series is Lie’s material on func-
tion groups.* (Of course, they are not “groups”” in the modern
sense, but Lie algebras.)

Weierstrass, Kowalewska, and Painlevé had a point of
view™® emphasizing certain “analyticity” properties of the
general solutions. My aim in this series is to investigate sys-
tematically, with the tools of modern differential geometry,
these two approaches and their interrelation, emphasizing
calculus-on-manifolds, Lie group and algebra theory, Ehres-
mann pseudogroup-foliation-connection theory, Kodaira—
Spencer deformation theory, and so on.

* Supported by Ames Research Center (NASA), Grant NSG-2402; U. S.
Army Research Office, Contract #ILI161102RH57-02 MATH; NSF
MCS8003227.
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In the work of Kowalewska and Painlevé™® “integrabi-
lity” involved certain analyticity properties (local or global)
of the general solution. Thus, the simplest condition of this
type might be that the general solution could be written as
the quotient of two functions which were analytic in the en-
tire space of the independent variables and the initial condi-
tions. Painlevé’s 1900 paper® is a key one to keep in mind. He
considered as an illustrative example the following two-pa-
rameter family of nonlinear ordinary differential equations:

-

d’y

~ =ay’ + bx, (1.1)
dx- 4
where a and b are parameters, or, in terms of a 3 X 3 system,
dy, dy, dy, 2
——::1’ e , ——’-:a;+b . (12]
dr dr 2 @ T '

He determines the values of ¢ and b for which there are six
analytic maps

CxC—C?,
N1 2%, Not; 2%, Nyt 2%,
D1, 2%), Di1;2%, Dift;2%),
teC,
=(,25,5eC
such that
y,lt):M, =123, (1.3)
D;(; z,)
is the solution of (2.2), with
y, 0=z for i=12,3. (1.4)

Now, for certain values of the parameters (@, b ), (1.2)
can be solved in terms of “‘constants of motion” and elliptic
functions, which can be interpreted as meaning that Lie’s
“function group” ideas can be applied. It is also noteworthy
that Lorenz’ “chaotic” equations® are of the same general
algebraic type.

Itis my goal in this series of papers to develop the differ-
ential geometric machinery to understand such examples
from a modern point of view. Where background material is
needed, but is not readily available in a straightforward form
in the current literature, I will provide explanations in the
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text or appendices.

This first part concentrates on the “function groups.”
As pointed out in Refs. 7 and 8, the relevant contemporary
mathematics is the theory of Poisson or cosymplectic struc-
tures® on manifolds. I will also present background material
on Ehresmann pseudogroup theory'® in the form developed
by Plante. !

Many of the integrable mechanical and physical sys-
tems discussed in recent years are generalizations of the rigid
rotating body; the key link here is a paper by Arnold.'? The
classic work of Sophie Kowalewska® on the analyticity—inte-
grability properties of rigid bodies is an important clue that
there are links between the Arnold-Lax and the analyticity
approach. This series of papers will also explore the founda-
tional aspects of this development. In this first paper I will
deal primarily with Poisson structures on manifolds, which
involve twice-covariant tensors on finite-dimensional mani-
folds. The underlying physics involves systems with a finite
number of degrees of freedom. 1 intend in a later paper in this
series to work on the field-theoretic generalizations, which
will involve higher degree tensors.'? Certain field theoretic
models'*'* involve Lie algebras which are infinite-dimen-
sional versions of the “function groups” of Lie. These Lie
algebras are also related to the “current algebras” of Gell-
Mann and the Kac-Moody Lie algebras.

The key mathematical property providing “integrabi-
lity” of these mechanical systems is the existence of a Lax
representation.'® A major theme of this paper is that the con-
struction of such representations can be traced back to the
“function groups” and associated geometric ideas, particu-
larly the theory on Lie algebras of vector fields on manifolds
and the work on pseudogroups by Ehresmann. I will show in
this paper (as announced briefly in Ref. 17) that the search
for a Lax representation for certain systems of differential
equations can be regarded as a sort of “quantization” of Lie’s
“function groups.”

2. POISSON OPERATIONS ON MANIFOLDS AND THEIR
ASSOCIATED TENSOR FIELDS

Let X be an n-dimensional C =, paracompact manifold.
% (X ) denotes the C * real-valued functions on X. Let

TX)= v X, 2.1)
xeX
be the tangent vector bundle and let
TYX)= v X¢ (2.2)
xeX

be the dual bundle, called the cotangent bundle. The 1-differ-
ential forms & '(X ) on X are the cross sections of 7%, while
the vector fields 77(X ) are the cross sections of 7'(X ). Let

TX)AT(X) (2.3)

be the exterior product of two copies of the tangent bundle.
Let

(T X)AT(X))

be its smooth cross sections. By the well-known principles of
multilinear algebra, the elements of the fiber of the bundle
(2.3) above a point x € X can be identified (and we shall do so)
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with the skew-symmetric, bilinear maps
o X¢xXY->R.

A C = cross section of the bundle T¢(X ) A T%(X) can be
identified with an .% (X )-bilinear skew-symmetric map:

w: G'NX)X Z'X)— FX). (2.4)

It will be called a bivector field on X.

Let such an w be given. It defines a certain type of geo-
metric structure. We will now describe in a coordinate-free
way certain geometric concepts naturally attached to this
structure that were treated in a tensor-analysis framework
by Schouten'® and Nijenhuis.!”

Definition: Let w be given as a cross section of the bun-
dle (2.3) defining a map of the type indicated in (2.4). Let
{ , ], bethemap

FXIX F(X)—>F(X)
defined as follows:

{fufo} = wldfi,dfy) for f, fre 7 (X). (2.5)
{ , }iscalled the Poisson operator associated with the bivec-
tor field w.

Remark: It will be called a Poisson bracket only if it
satisfies the Jacobi identity, i.e., if the Schouten-Nijenhuis
curvature tensor (which will be defined below) is identically
Zero.

Theorem 2.1: The Poisson operation { , | associated
with w € I'(T{X ) A T (X)) satisfies the following identities:

{folole = = fi], for fi,fre 7 (X)), (2.6)
{fl’f2’f3§}w = {fl’.fZ}wf;: +.f2{f1’f‘3}w
for £}, /o i€ F(X). 2.7

Let us now be algebraic'®*° and consider abstractly an

R-bilinear operation { , | on.#{X)satisfying (2.6) and (2.7).
For each fe .7 (X), set

Vifl={fh1}- (2.8)
(2.7)says that V, is aderivation of # (X ); it can then be identi-
fied with a vector field on the manifold X, i.e., a cross section
of the tangent bundle T (X).

Theorem 2.2: The mapping

f— Ve
associated with the bivector structure on X satisfying (2.6)-
(2.7) is a first-order linear differential operator from . (X ) to

77(X). The symbol of the operator (in the sense of Refs. 20
and 21) is a linear bundle map

o TYX)—T(X) (2.9)
such that
0,(0160,)) = — 6,(0(8)) for 6,,6,e X%, xeX. (2.10)

Proof: From (2.8) we have

Vitsi =HV, + 4V, (2.11
This derivation rule characterizes first-order linear differen-
tial operators, in the treatment of Chap. 1 of Ref. 20. As
defined there, the symbol o of this operator assigns to each
xeX,0e X an element o(6) of X,. Thus, X ¢ is the dual
vector space to the tangent vector space X, . 6,(0{8,)), as it
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appears in relation (2.9), is the value that the 1-covector 8,
takes on the tangent vector o{6,). The algebraic identity
(2.10) now follows readily from (2.6).

Theorem 2.3: Let { , | be an R-bilinear map:
F X)X F(X)— F(X) satisfying (2.6)~(2.7). Then, there
isauniquebivectorfieldw € IN'(T(X)A T (X ))suchthat{ , }
is associated with o in the sense of formula (2.5).

Proof: Set

0(6,,0,) = 6,(016,)), (2.12)
where o is as in (2.9), the symbol of the assignment f— V.

Formula (2.5} is now readily verified by tracing backwards
from the definition.

3. THE SCHOUTEN-NIJENHUIS TENSOR ASSOCIATED
WITH A BIVECTOR FIELD

Let { , } be a fixed bilinear differential operator:
F X)X F(X)— .7 (X) satisfying (2.6)-2.7). For
S for fy € F LX), set
ﬂ(fl!fZ’f:‘%) = [fl{fz’f:%}} - {{flvfz}’fS}
VAN R (3.1)

Notice that (2 is a trilinear, skew-symmetric differential
operator:

FXIX FXIXFX)—> F(X).
It is identically zero if and only if { , | defines a Lie algebra

operation on .7 (X ).
For fe #(X), let V, be the vector field on X defined by

Vi =14 4] for fie FX). (3.2)
f— V,isthenalinear mapping of the vector space . (X ) into
the Lie algebra 77(X'}. We want to find the conditions that it

is a homomorphism of the algebra defined by { , ] into the
Lie algebra structure. To do this, consider £}, 5, f; € # (X ):

[ Vi Vi )R =V (VA A) = Vi (Vi)

= Vf{ z,fsl - V/'Z{fnf_z}

={/u 1} = 1A A)), (33)
V;f,.m(f}): {{fl’fz}’fz} (3-4)

Theorem 3.1: {2 is identically zero if and only if the map
f— ¥, is a homomorphism of the algebra structure { , |
defined on # {X) into the Lie algebra structure on 77(X).

Proof: Notice that (3.3) and (3.4} give the formula

-Q(fhfzsf,z)z [V/’,! sz](f?)_ V)f.,fz!(f,?)' (3-5)

This formula makes Theorem 3.1 evident.

Theorem 3.2: (2 is a skew-symmetric, first-order, homo-
geneous, trilinear differential operator. For fixed f;, f; the
mapfs — 2/, [> fi)of ¥ (X ) —=F (X )isaderivation of the
associative (i.e., pointwise-product) algebra structure on
FX).

Proof: This is also obvious from formula (3.5).

From general principles of the algebra of multilinear
differential operators (again, refer to Chap. 1 of Ref. 20) one
can now define the symbol of £2, 0{f2 ). For x € X, it is a trilin-
ear, skew-symmetric map

o), X¢xX¢xX?R. (3.6)
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ol{2), is defined as follows. For 6,,6,,6,c X ¢, choose
Joforfy € F (X ) such that

Silx) =folx) = fi{x) =0, (3.7)

df\(x)=6,, dfilx)=0, dfijx)=6,. (3.8)
Then,

0(42).(60,,602,605) = 2 ( f1, 2 f3)lx) . (3.9)

As x varies, x — o(x), defines a tensor field on X, i.e., a cross
section of the vector bundle

TX)ATX)AT(X). (3.10)

This tensor field is called the Schouten tensor of the bivector
field w.

We can sum up what we have proved as follows:

Theorem 3.3: Let w e I' (T (X) A T (X)) be a bivector
field on the manifold X. Then, its Schouten tensor
Rel(TX) A TX) N\ T(X))iszeroif and only if the asso-
ciated Poisson operator { , ], on % (X) satisfies the Jacobi
identity, i.e., defines a Lie algebra structure on % (X).

Theorem 3.4: Let w be a bivector field. If each point x of
X is contained in a coordinate system such that the compo-
nents of w in this coordinate system are constant, then the
Schouten tensor {2 vanishes. In particular, the associated
Poisson structure satisfies the Jacobi identity.

Proof: This follows from the “tensorial” property of £2.

4. EHRESMANN PSEUDOGROUPS ON A FIXED
MANIFOLD AND THEIR LINEAR ISOTROPY GROUPS

In the 1950s, Ehresmann developed'® a major founda-
tional concept for differential geometry, the pseudogroup.
Unfortunately, he presented his ideas (which were abstract-
ed from the classical work of Lie, Vessiot, and Cartan} only
in short notes and conference proceedings; hence his ideas
and theories have not penetrated directly to the physics and
applied mathematics world. In this section I will recapitulate
some of this material in a form that will be useful in the broad
areas of physics and system theory, partially following ideas
of Plante."" A key concept in Ehremann’s work is the gener-
alization of the “linear isotropy subgroup of a transforma-
tion group’’ concept to a pseudogroup.

Definition: Let X be a C =, paracompact manifold. A
local C ~ map is a triple

5=(D,¢,R)
consisting of open subsets D, R of X, and a (C ) map ¢:

D — R mapping Donto R. Disthedomain of 5, R the range.
If ¢ is a diffeomorphism between D and R, we say that S isa
local diffeomorphism for X.

If§ = (D, ¢, R)is such alocal map, with ¢ a diffeomor-
phism, define

5 '=(R, 67", D), 4.1)

where ¢ ~'is the inverse map to ¢, a diffeomorphism from R
to D.

If
5:(D’¢’R)’ 5’=(DI:¢,yR,)v
are local maps, we say that
5Cs’ (4.2)
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if the following conditions are satisfied:
RCR’, DCD', 6§=§& restrictedtoD. (4.3)
If6§=(D,¢,R)and 8’ = (D', ¢', R’} are local maps,
we say that

6~8' (4.4)
if the following condition is satisfied:

$ix)=¢'(x) forall xeDnD'. (4.5)

If 5 and & ' satisfy (4.4), we will define

Sus'=(D",¢",R") (4.6)
as follows:

D"=DuD’, R"=RUR",

d"x)=¢(x)=¢'(x) for xeDnD’',

¢"(x)=¢(x) for xeD, (4.7)

d"(x)=¢'(x) for xeD'.

It is readily seen that these formulas define ¢ " as a C * map.
However, of course, it may not be a diffeomorphism, even if
¢ and ¢ ' are diffeomorphisms.

Suppose 8 = (D, ¢, R)and §'(D’, ¢, R ') are local dif-
feomorphisms. Define another local diffeomorphism

598'=D",¢",R") (4.8)
as follows:

D" =¢'"YDnAR’), (4.9)

R"=¢(DnR"), (4.10)

d"(x)=¢(d'(x)) for xeD". (4.11)

Definition: A collection 4 of local diffeomorphisms of
the manifold X is said to be an Ehresmann pseudogroup act-
ing on X if the following conditions are satisfied:

(1) The identity map

I =(X,id, X)

is an element of 4.
(2} If6c 4, thend ~'ed.
(3)If 6,6 € A, then

do5'ed .

(4)1If6'cAand 5CS', then e A.

(5)1f6,6' €4 with§~6 " and if §U S’ is a local diffeo-
morphism, thendud’ € 4.

The most important pseudogroups in both geometry
and physics are those defined via tensor fields. A tensor field
7 on a manifold X is a smooth cross section of a tensor pro-
duct bundle of the tangent bundle 7'(X ) and its dual 7¢(X ).
[Alternately, it may be considered as an associated bundle, in
the sense of Steenrod,? of the principal tangent bundle with
structure group GL(n, R ), defined by a linear action of
GL(n, R) on a real vector space.]

A local diffeomorphism § = (D, ¢, R ) is then said to be
a symmetry (or automorphism) of 7 if, for each x € D, the
linearmap @, : X, — X, acting on tensors, sends the val-
ue of 7 at x to the value of 7 at ¢ (x). It is readily seen that the
set of such symmetries of 7 defines an Ehresmann pseudo-
group, as defined above. We will call such a pseudogroup a
tensorial pseudogroup.
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The pseudogroups encountered in physics and geome-
try often have a special property, that one calls “flatness.”

Definition: A tensor field 7 on a manifold X is said to be
locally flat if the following condition is satisfied:

Each point x has a neighborhood U and a coordinate
system (x') defined on U such that the components of 7in U
with respect to the bases of tensor spaces constructed from
8/9x" and dx’ [which are cross sections of T(U)and T¢(U )}
are constant in U.

We can also consider relations between Ehresmann
pseudogroups and sets of vector fields on X. Let V be such a
vector field. Let £ — exp(tV') be the one-parameter pseudo-
group it generates, i.e., the collection of local diffeomor-
phism: D — R obtained by finding the orbit curves of ¥,
starting at points x € D, then going out ¢ time units.

Definition: V is associated with the Ehresmann pseudo-
group if each local diffeomorphism generated by the orbit
curves of V belong to D.

Standard results prove the following;

Theorem 4.1; Let 7 be a tensor field on a manifold X and
let & (r)be the Lie algebra of vector fields ¥ € 7"(X jsuch that

ZL (1) =0 (4.12)

(£ denotes “Lie derivative.”) Then, the pseudogroup of
symmetries of 7 contains the one-parameter pseudogroup
generated by the vector fields in ¥ (7).

Now, for the “linear isotropy subgroup” concept.

Definition: Let Z = (D, ¢, R ) be a pseudogroup on a
manifold X. Let x be a pointof X. Let (D, ¢, R ) € & betheset
of elements of pseudogroups such that the following condi-
tions are satisfied:

xeDnR, dx)=x.
Associate with (D, ¢, R ) the linear map
¢*: XX _’XX :
The collection of linear maps on the tangent space X,
which, it is readily seen, forms a group, is called the linear
isotropy group of the pseudogroup & at x.
This concept unifies many special situations encoun-

tered in classical and modern differential geometry and dif-
ferential equation theory.

(4.13)

5. PSEUDOGROUPS AND POISSON TENSORS

We can see the immediate relevance of these concepts to
the study of Poisson tensors w, and the associated Poisson
operators { , }. Let w be a bivector field, an element of
D(TX)AT(X)); | , }is an R-bilinear map
FX )X F(X)-— F(X). The Schouten tensor of w, 12, is an
elementof I'(T(X)AT(X)A T (X)). Let 4 (w)be the Liealge-
bra of vector fields ¥ € 27(X ) such that

L ylw)=0, (5.1)
ie.,

V(w(elrez)) = @(fv(el)’az)

+ (b, .L,(6,) for all 8,,8,e Z'(X). (5.2

We will state a few typical results, which are readily
proved using the general geometric principles proved above.
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Theorem 5.1: If w is flat, then @ = 0, and | , ] satisfies
the Jacobi identity, and makes .# (X ) into a Lie algebra.

Theorem 5.2: A vector field V'is a symmetry of the bi-
vector field if and only if it satisfies the following condition:

Vifu ol =VILLL+ S VL) for fi,e 7 (X)), (5.3)

i.e., Lie derivation by V'is a derivation of the algebraic oper-
ation on .# (X ).

Proof: That (5.3) follows from (5.2) is a routine deriva-
tion, left to the reader.

For the converse, suppose that (5.3) is satisfied. Note
that this proves that

L ylofdf, df,) =0 for all f,f,e #(X).

But that .¥ - (w) vanishes follows from the tensorial property
of ¥ (o).

Theorem 5.3: If 2 = 0, if f€ # (X'}, and if V', is the vec-
tor field defined by V(f’) = { £, f'}, then ¥ satisfies

Ly w)=0.

In particular, the one-parameter pseudogroup ¢ — exp(tV;)
belongs to the pseudogroup of all symmetries of w.

6. SINGULAR FOLIATIONS AND THE FROBENIUS
INTEGRABILITY THEOREM: IMPLICATIONS FOR THE
POISSON STRUCTURE

I will now recapitulate work done in singular foliation
theory. Let X bea manifold, and let %" be a linear subspace
of 77(X). For x € X, let #7(X ) be the linear subspace
{V(x):V e #} of values of % at x. A continuous, piecewise
C = curve t — x(t), a<t<b, issaid to be an orbit curve of 7~
if the following conditions are satisfied:

%(:)e Wixit)) for a<t<b. (6.1)

{dx/dt denotes the tangent vector field to the curve.) For
xo € X, let C (¥, x,) be the accessible set from x, along orbit
curves of %77, the set of points of X which can be joined to x,
by an orbit curve. (The letter “C” is in honor of Caratheo-
dory®* and Chow,** who started this development.)

Theorem 6.1: The subsets C (%, x,) of X, as x runs
through X, define an equivalence relation on X for which
C (%", x) are the equivalence classes. Each such set can be
given the structure of an immersed submanifold.

For proof and background, see Refs. 25-27.

Suppose now that % is a Lie subalgebra of 77(X), i.e.,

(7, 1w . (6.2)

In general, one does not know that the accessible submani-
folds C (%, x) are integral submanifolds of the tangent vec-
tor distribution x — 7#7(x). The following result was proved
in Ref. 25.

Theorem 6.2: Suppose that (6.1) and an additional fol-
lowing condition is satisfied:

For each orbit curve 1 — x(t ) of %7, the dimension
of the tangent vector space #7(x(¢)) is constant
as ¢ varies. (6.3)

Then, the submanifolds C (%", x,) are maximal integral sub-
manifolds of the singular foliation % in the sense that the
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tangent space of C (¥, x,)) at each point x € C(¥#7, x,) is
equal to #(x). Further, (6.3) is satisfied if either X and %~
are real analytic, or % is locally finitely generated in the
sense defined in Ref. 25.

There are evident implications for this basic theorem to
the study of curvature-zero Poisson structures and the
Ehresmann pseudogroups they generate. Let { , | be such
an operationon .7 (X ). For fe .7 (X ) let ¥, be the vector field
on X such that

VA =1{LS"} for feF(X). (6.4)
Then, f— ¥, is a Lie algebra homorphism and
G =V feF(X)}

is a Lie subalgebra of 7(X ). Hence, Theorems 5.1 and 5.2
apply. & defines a singular foliation of X, i.e., a decomposi-
tion into submanifolds. The Lie algebra of vector fields &
(a the pseudogroup it generates) are tangent to the leaves of
this foliation.

7. HOMOMORPHISMS OF BIVECTOR FIELDS AND
FUNCTION GROUPS IN THE SENSE OF SOPHUS LIE

The Poisson bracket operation of analytical mechanics
is usually defined by means of a closed 2-differential form,
i.e., a twice-covariant tensor field, a cross section of the vec-
tor bundle 7¢(X ) A T?(X ). The case where the manifold X is
even-dimensional and the form is of maximal rank is the
traditional one, treated in all the modern treatises on me-
chanics. The case where the form does not have maximal
rank is also interesting, and was first treated systematically
in Ref. 13. In this case, the Poisson bracket cannot be defined
onall functions on X, but only on a subalgebra. This ““covar-
iant” formalism can also be extended'” to higher degree dif-
ferential forms, and thereby to field theories.

Now, covariant tensor fields have certain properties rel-
ative to C * mappings between the manifolds on which they
live: They “pull back” dually to the mapping. (This is the
meaning in differential geometry of “covariant™!) The Pois-
son structures arise from contravariant tensor fields, which
“push forward.” However, the push-forward map cannot be
defined for an arbitrary tensor field.

To elaborate algebraically, let X and X' be C * para-
compact manifolds (possibly of different dimension) and
¢: X — X' a C~ map. At each point x € X, the differential
¢, maps the tangent vector space X, linearly to the tangent
space X ;. This leads to a linear bundle map
#,: T(X)— T(X')and the following commutative map-
ping diagram:

b TX) — T

i !
6 X — X’
Consider the cross sections I (7' (X)) and I (T'(X ')). They do
not map naturally under ¢, : Givena Ve I' (T (X)),
¢, (V): X > ¢, (V(X)) cannot be defined naturally as a
cross section of T{X ') because a fiber X . may arise as the
image under ¢, of fwo fibers X, and X, . However, one can

impose an extra condition that ¢, (V') be well defined as a
crosssectionof T (X '). Letussay that Vand V' are ¢-relatedif
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¢, Vix)=V'(#(x)) forall xeX, (7.1)

i.e., if the following diagram of maps is commutative:

05*
TX) — TX

1% TV’ (7.2)
&
X — X'

If Vand V' satisfy (7.1), then it is readily seen that ¢ maps
orbit curves of V into orbit curves of V', i.e., ¢ is an intertwin-
ing map for the one-parameter pseudogroup of diffeomor-
phisms generated by Vand V', In this geometric form, the ¢-
related vector fields play a basic role in the Lie—Cartan
geometric theory of differential equations. (They are *“pro-
longation maps” for the underlying differential equations.)

Thus, the geometric relation between contravariant
tensor fields on X and X ' can only be considered as involving
special pairs (7, 7') which are ¢-related via (7.1)-(7.2). We can
do the same for bivector fields.

Definition:Let¢: X — X' bea C * map between mani-
folds,andletw e IN'(T(X)A T (X ))andw' e T (T(X ')A T (X))
be bivector fields on X and X '. They are said to be ¢-related,
and we write

¢* ((0) = (l)’ 4 (73)
if the following condition is satisfied:

ol@*01),s*O:1) =w'(6],6})

forallxeX,all0{,6;eX,,, . (7.4)

The following results are easily proved.

Theorem 7.1: Let { , }_ and { , }.. bethe operations
on % (X ) and .5 (X ') defined by the bivector fields @ and o'
Then (7.4) is satisfied, i.e., ¢, (») = @', if and only if the fol-
lowing condition is satisfied:

S S ) =18 1) d* )]

forall f,f;e5(X". (7.5)

Theorem 7.2: If » and ' are ¢-related, so are their cur-

vature tensors £2 and {2 . {This says that the differential oper-
ator @ — {2 is a “‘natural” operation.)

8. HOMOMORPHISMS OF POISSON STRUCTURES AND
FUNCTION GROUPS IN THE SENSE OF SOPHUS LIE

Let X continue as a manifold with & a bivector field
defining a Poisson operation

(fi.[o) — { fl’fZ}
on 7# (X).

Definition: A set f,,..., f,. of functions on X is said to
form a function group, in the sense of Lie, relative to the
Poisson tensor o, if and only if there are C = functions

F,: R"—R, I<ij<m,
such that
(i fiYo®) = F3(fi(®),-., frn(x) forall xeX. (8.1)

Remark: The terminology “function group” is obvious-
ly archaic—they are not groups in the sense we use the term
{except trivially, in the additive structure). However, what
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Lie usually called a “group” we would call a “Lie algebra.”
Hence, an appropriate modern name might be Lie function
algebras.

Theorem 8.1: Suppose that ¢: x — ( fi(x),..., f,,, (x)) de-
fines submersion maps from X to R ”. Suppose Dis the image
in R " of this submersion; it is, of course, an open subset of
R ™. Then, (f,,..., f,,) form a function group if and only if
there is a bivector field ' on D' such that

.0 =0".

The proof'is given in Ref. 7.

9. LIE “FUNCTION GROUPS” GENERATED BY LIE
ALGEBRAS OF VECTOR FIELDS

Let us first recall the definition of a “‘symplectic struc-
ture.”

Definition: Let X be a manifold. A symplectic structure
on X is defined by a 2-differential form % which satisfies the
following conditions:

vin=0 forveTX)=v=0, {9.2)
i.e., 77 has no nonzero (Cauchy) characteristic vectors.

A symplectic form 7 defines a Poisson bracket oper-
ation on .# (X+). For fe # (X ), define V', € 77(X ) as follows:

df=V,17q.
Then set

{f;fl} = _Vf(fl)- (9-3)

Theorem 9.1: There is a bivector field w on X with zero
Schouten tensor, which gives rise to the Poisson bracket op-
eration (9.2). Algebraically, o is the dual tensor to the (non-
singular) 5. In local coordinates (x'), 1</, j<n, if
7 =17, dx' Adx’, then

; d
w=7n"— A -
K ox'  dx’
where (7Y) is the inverse matrix to (7 ;) [Which exists because
of condition (9.2)].
Now, let Q be a manifold and let
X=T10Q) (9.5)

be its cotangent bundle. Let ¥ — f,,, 77 Q) — % (X ) be the
map defined as follows:

S(6)=0(Vg)

(9.4)

for Ve 77(Q), 6€Q,, qeQ.

(9.6)
Let 7 be the canonical symplectic form on T%(Q ) = X,
andlet{ , | bethecorresponding Poissonbracket on.% (X ).
(It is the standard Poisson bracket used in analytical me-
chanics when Q is the configuration space manifold of the
mechanical system.)
Theorem 9.2: For V|, ¥V, € 77(Q), then

{fVl’fvzl :f[V],VZ] ’ (9.7)

i.e., the mapping ¥ — f, is a Lie algebra homomorphism
from 77(Q) to the Lie algebra .5 (T¢(Q)).

Proof: Well known.

Suppose now that & is a finite-dimensional Lie algebra

Robert Hermann 2427



of vector fields on Q. Let
Ve, 1<a,b,c<m,
be a basis for & . It satisfies relations of the following form:
(Ve wo]=Aa2pe, (9.8)
where (A ?°) are the structure constants of the Lie algebra.
By Theorem 9.2, the functions f* = f,.on T¢(Q) = X
satisfy the same Poisson-bracket relations:
{fofoy=acre. (9.9)
Theorem 9.3: Let D be an open subset of X on which the
differentials

art,...df"
have constant rank. Let ¢: D — R ™ be the following map:
X — ()., fx)) -

Then, thereisa Poisson structure on the submanifold ¢ (D ) of
R ™. If the indices are relabelled so that the df,..., df " are a
maximal linearly independent set among the (df %) on D, then
the (f',..., /") form a function group in the sense of Lie.

Proof: The £+ 1 ..., f™ can be written locally as func-
tions of the /*,..., f".

We temporarily leave the general theory of function
group—Poisson—cosymplectic structures in order to make
differential-geometrically precise one version of what is
meant (in the mathematical-physics—applied mathematics li-
terature) by a “Lax representation” of a system of differen-
tial equations.

10. THE LAX REPRESENTATION OF VECTOR FIELDS

Let us begin with one of the many possible definitions
(in the context of differential geometry) of what is meant by
the “Lax representation.”

Let X be a C *, paracompact finite-dimensional mani-
fold. Let ¥ € 77(X ) be a C * vector field on X. x: ¢t — x(t),
a<t<b, is a (continuous piecewise C =) curve in X.

x — (dx/dt)(t ) € X,,, denotes its tangent vector field. x is an
orbit curve (or “integral curve”) of Vif

dx

ke Vix(t)

for a<i<b.

Definition: Let W be a real vector space, and let L (W)
denote the vector space of linear maps: W — W. A Lax re-
presentation for the vector field Ve 77(X)isa C * map
a: X — L(W)XL(W),a(x) = (4 (x), B (x))such that the fol-
lowing condition is satisfied:

For every orbit curve ¢t — x(¢) of the vector field V, the
curve

t—afx{t)) = {4 (x(t)), B {x(t))
inL (W)X L (W )satisfies the following differential equations:

d

o Aflx(r)) = [B{x(t)), A {(x(t)],

where [ , ] denotes the commutator bracket in L (W)
There are now many explicit examples of such repre-

sentations in the physics and applied mathematics literature,

and suggestions that it might be possible to extend the ideas

(10.1)
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to infinite-dimensional manifolds and vector spaces. (Of
course, the original Lax work, '® based on the inverse scatter-
ing method of Gardner et al.?® was in such an infinite-dimen-
sional context, but Lax did not attempt to fit it into a precise
framework of infinite-dimensional manifolds.)

Restricting attention to the finite-dimensional case, I
will now describe how the basic geometry of Lie algebras of
vector fields on manifolds may be used to construct Lax re-
presentations.

11. LAX REPRESENTATIONS CONSTRUCTED FROM
LIE ALGEBRAS OF VECTOR FIELDS

Let X continue as a manifold with & a real Lie subalge-
bra of 77(X), the Lie algebra of all vector fields on X.
For x € X, let

Gix)={V(x) Ve F}CX,.

A curve x: t — x(t), a<t<b, is an orbit curve of ¥ if

(11.1)

d—xe Z(x(t) for a<i<b.

11.
dt 112

Let

C(¥, x) = setof points which can be reached starting at
x along a continuous, piecewise C = orbit
cuveof ¥ .
As werecalled in Sec. 6, C (¥, x} can be given the struc-
ture of an immersed submanifold of X, and
C(%9,x),2 Yy for yeC(F,x).
[C(¥, x), denotes the tangent space to the manifold
C{¥, x) at the point y, identified with a linear subspace of
X, .] The pseudogroup generated by ¥ maps each C (Y, x)
into itself.
Now, let ¥ be a vector field on X such that
Vix)e ¥ (x) (11.4)

Let W be a real finite-dimensional vector space with
L (W) the vector space of linear maps: W — W. Let

(11.3)

forall xeX.

b X > L(W), B 9 —L(W)

be maps, with /3 linear.

L (W)is,of course,avectorspace. Fora € L (W ),identify
then the tangent space L (W), with L {W). With this under-
standing, suppose the following condition is satisfied: There
isa Liealgebrahomomorphismf: ¥ —s L (W )suchthat, for
eachxc X, eachBe 9,

¢ (Bix))=BB)eL(W). (11.5)

Theorem 11.1: With the conditions stated above, (¢, 5)
defines a Lax representation for the differential equations of
the orbit curves of the vector field V.

Proof: Our hypotheses imply that there is a curve
t— B(t)in ¥ such that

%Jti =Br)x(¢)) for a<e<d. {11.6)

Then, (11.4)~(11.5) imply that
%w& (e ) = [ B(Be)), & (xie)] , (11.7)
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which is precisely what is meant by a “Lax representation.”

Having perceived a geometric mechanism for generat-
ing Lax representations of dynamical systems, we now turn
to investigation of the geometric-physical structure for me-
chanical systems that will generate the conditions required
for a Lax representation.

12. GENERAL REMARKS ABOUT THE GEOMETRIC
MEANING OF “QUANTIZATION” OF PHYSICAL
SYSTEMS

Let us summarize what the mathematical physicists of
the period 1925-1930°°-*! meant by “‘quantization,” and the
crucial contributions made later by Moyal*? and van Hove.>*

Let X be a manifold with a Poisson bracket structure
{ , } onthespace (X )of C =, real-valued functions on X.
Then endow .% (X') with both a Lie algebra structure (the
{ , } bracket)and a commutative, associative algebra struc-
ture (pointwise product). Dirac’s original idea of what
“quantization” means can be put into the following terms:
Suppose a physical system prescribes a linear subset & of
Z (X)), the distinguished “observables.” Form the subset of
(f1, [o) € & X € such that

{fufited .

Find a vector space ¥ and a linear mapping
Q7 L(V)

such that the following condition is satisfied:
QUfP=QLf)P forall feo,

Q({ /i, o) =Q(AIQ (L) — Q(AIC(fi)
for all (f),f,) satisfying (12.1).

(12.1)

(12.2)

(12.3)

Dirac’s work did not treat definitively the mathematical
question of whether “‘quantization” could be regarded as a
Lie algebra representation of the Lie algebra defined by the
Poisson bracket structure on the real-valued C * functions
of the classical positions and momenta, although that, of
course, was an obvious question after his work. The mono-
graph by van Hove*® was a historically crucial clarification
of this question: For the case of X = R?", with { , } the
usual Poisson bracket structure of analytical mechanics, he
showed that the usual “quantization” rules for Newtonian
particle systems cannot be extended on a Lie algebra repre-
sentation of all polynomial functions on X. As an alternative,
he constructed a representation of this infinite-dimensional
Lie algebra using the contact structure on R ***'. In a geo-
metrically related work, Boothby and Wang** classified glo-
bally certain of these contact structures. Putting these two
basic papers together led to the extensive “geometric quanti-
zation” literature of today.*—3’

If a “*quantization” cannot mean (in general) a Lie alge-
bra representation of the Poisson bracket Lie algebra, what
does it mean? Weyl and Moyal gave what seems the reasona-
ble partial answer. In its general form?® it goes as follows:

Let & be a linear subspace of .7 (X ), satisfying the fol-
lowing condition:

For f,,..., f,, € & which are linearly independent, there
is a nonzero polynomial P( ,..., ) in m variables such
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that P(f,,..., f,) = 0. (In other words, the elements of
«/ are algebraically independent as functions on X}
(12.4)

Let Z (/) C % (X) be the algebra of functions on X
which are polynomials in the element of &7 Let

p: o —L(V)

be a linear mapping of .7 to the space of linear maps on a
vector space V. Extend p to a mapping

p: Pld)—L(V)

as follows:

1
Pl Sn) = — > plfi)-plf)

(igmeiy)
(12.5)

where the sum in (12.5) extends over all permutations of
(1,..., m). [Thus, (12.5) represents “quantization by complete
symmetrization.”] One can now carry back the Lie algebra
structure on L (V) (i.e., operator commutator) to define a Lie
algebra structure on (/). If X = R *", with ./ the linear
functions on X, and p (depending on a parameter #, Planck’s
constant), the usual Schrodinger operators (V' = C =, rapidly
decreasing functions on R "}, then the operator bracket
pulled back to Z (&) is the Weyl-Moyal bracket.>*3? It de-
pends on the parameter # and reduces, for i = O, to a classi-
cal Poisson bracket. It defines a deformation of the Poisson
bracket Lie algebra.

Thus, we see that in one formulation “‘quantization” is
algebraically a process of extension of linear maps by some
process of symmetrization. Thus, it is not surprising that it
has a close relation to invariant theory. (1 pointed out in Ref.
38 that operations occurring in the Weyl-Moyal theory were
the transvections of classical invariant theory.) It is this alge-
braic aspect of “quantization” that I want to implicate in the
search for Lax representations of physical systems.

for m=12,...,

13. PHYSICAL SYSTEMS GENERATED BY FINITE-
DIMENSIONAL LIE SUBALGEBRAS OF A POISSON
STRUCTURE

Suppose the manifold X has a Poisson structure { , }.
Let n be an integer, and let , j, &, - - - be indices running over
0 to rn with the summation convention. Suppose that

() e #X)

are a set of functions on X such that conditions (13.1)—(13.3)
are satisfied:

fox)=1 for all xeX. (13.1)

The f,..., f" are algebraically independent, i.e., there is
no nonconstant polynomial function P: R” — C such that

P(f...f =0, (13.2)

(=20 7", (13.3)
where (4 {} are real numbers. (They satisfy the Jacobi identi-
ty, i.e., are the structure constants of a finite-dimensional Lie
algebra.}

Let 7 be the smallest associative subalgebra of % (X))
containing the f*. ./ is then also a Lie subalgebra of % (X )
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[because of condition (13.3)].

Let h be an element of .. Construct the vector field V,,,
with

V.if)=1{hf} for all fe F(X). (13.4)

Consider 4 as the Hamiltonian of a physical system (ex-
amples will be given below). Let & be the finite-dimensional
Lie subalgebra of % (X ) spanned by the f*.

Theorem 13.1: ¥, is tangent to the orbit submanifolds
of &. Suppose

¢6: X—>L(W), B: & —>L(W)
are a pair of mappings such that

B is a Lie algebra homomorphism, (13.5)

forallxeX, Ve Y, ¢, (V(x) is the tangent vector at
t=0ofthecurvet — ¢ (x) +B(V). (13.6)

Then, ¥V, has a Lax representation.

Proof: This follows from Theorem 11.1.

We can now use ‘“‘quantization” ideas to construct the
map ¢: X — L (W). Start off with 3 given as a linear repre-
sentation of the Lie algebra .

Let o7 be a linear subspace of % (X ) containing &, such
that B can be extended to a linear mapping

B: o —>L(W).

(For example, & might be the space of polynomial functions
on the generators of &, with B extended by “totally symmet-
ric quantization,” as explained in Sec. 12.)

Let ¢: X — L (W) be a map such that

flx)=tr(B(f)g(x)) for all xeX, fe o . (13.7)

Suppose now that 4 € «/, and V), is the vector field on X
defined by the Poisson structure. Consider 4 as the Hamil-
tonian of a physical system, so that ¥, is the vector field
which generates the dynamics of the system. Let

t—x(t)

be an orbit curve of the vector field V,,

d Ju——
Ef(x(t N ="Vilf)
= {h’f}(x(t )

Combine (13.5) and (13.6). For fe &7,

g; (Flxle ) = g; (tr( B ()6 (x(2 )
d
- tr(ﬂ (12 8t )))
=t B({h,f )b (x(1)) -

Hence, we have the following relation:

d -
tr(ﬁ({h,f])tﬁ (x(z)) —B(f):it-fﬁ(xv))) =0. (139

So far, we have made no assumption about how /3 be-
haves relative to the Poisson bracket structure on % (X ). Let
us now assume that /3 satisfies the following condition:

BUlh ) =1Bh),B(/N for all fe . (13.10)

Combining (13.7) and {13.8) and using the following identity
for operators in finite-dimensional vector space,

for all fe F(X).  (13.8)
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tr({4, B]C) = — tr(B[4, C]),

we have

tr(ﬁ (f)( % B (x(t)) — [ B(R)x(t), 6 (x(r m))
for all fe o . (13.12)

We can now state what we have proved in the following
form:

Theorem 13.2: Suppose .« is a vector space of functions
on the Poisson manifold X such that the following conditions
are satisfied:

There is a linear mapping

(13.11)

B - L(W) (13.13)
which is onto. h is an element of .« such that

Bl ) =1Bh),B(f)] (13.14)

for all fe .
There is a map ¢: X — L (W) such that:

Sfx)=tre(B(f)p(x)) for all fe o . (13.15)
Form the vector field ¥, on X by the rule

Valfy=1thf}. (13.16)
Then, for every orbit curve t x(t) of ¥V, we have

£ 6 (xlt) = [B 1A )ixi)). & (x(1) . (13.17)

In words, (¢, 8) defines a Lax representation for the vector
field V,,.

14. THE TODA LATTICE AND GENERALIZATIONS IN
TERMS OF FUNCTION GROUP-POISSON STRUCTURES

In Ref. 17, I have briefly described how the Toda lat-
tice*>*° models are described in terms of one type of function
group. I will discuss certain elaborations of this material
here, and then use the hydrogen atom to illustrate how more
complicated function groups may arise naturally in physical
problems.

Let M be a symplectic manifold of dimension #. Choose
indices as follows, and the summation convention

I<i, j<n .

Let (¢, p;) be a canonical coordinate system for M, i.e., the
symplectic form is

o =dp,\Ndq".
Then,
{pi’ qj} :(SJ: ’

(14.1)

(14.2)
{pop) =0=1{q,¢},
where { , } is the Poisson bracket on .# (M}, the C =, real-

valued functions on M. Let a'(g) be functions of the ¢ varia-
bles such that

[p,.,aj} =chd +d/, (14.3)
where (¢, ), (d/) are constants. Set
h=3 p+ @ (14.4)
i=1
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Let us now use 4 as a Hamiltonian to construct a set of
Hamilton’s equations:
g=H, p=-—-H,. (14.5)
Asshownin Ref. 17, one choice of a’s, ¢’s, d ’s (involving
variable parameters) leads to the Toda lattice. Let us look at
this more systematically, without specializing the choice of

a’s, as in Ref. 17.
Let

ai = _a_ s 81, = .i

ap; dq'
be the coordinate vector fields on M. Let (4,) be the vector
fields on M such that

A(f)=1{d,f} for fe FM). (14.7)
Since Poisson bracket is a Lie algebra homomorphism, (14.3)
implies the following relation:

[d,,47] =4%4% [4,47]=0.
This makes evident the following result:
Theorem 14,1: The vector fields (d,, 47) form a Lie alge-

bra .% of vector fields on M which have the following prop-
erties:

(14.6)

(14.8)

-7 is the semidirect sum of the Lie algebra ideal gener-
ated by the 4 ' and an abelian subalgebra generated by
the d;; (14.9)

each vector field in .¥” generates a one-parameter pseu-
dogroup of automorphisms of the given symplectic
structure on M. (14.10)

Also:

Theorem 14.2: Consider % (M ) as a Lie algebra under
the Poisson bracket operation. Let .7’ be the linear subspace
of % (M ) spanned by the p,, the &, and the constant func-
tions. Then, .’ is a Lie subalgebra of (M ). It is a solvable
Lie algebra. Let .o be the linear subspace spanned by the a’
and the constant function; & the linear subspace spanned by
the p,. Then,

L=+ P, (14.11)
(o, 4} =0=1{P, P}, (14.12)
(7, 4)C o,
(h,Z\C P, (14.13)
(h, ?|C & o .

One key question for the general theory of “integrable
systems” is how to choose the functions

g — a'lg)
to satisfy these conditions. We can now determine all such
a’s.

The functions ¢ — a/(g) satisfy the following differen-
tial equations:

o~ Ad+d, (14.14)
aq'

whence
%aj(qt)=/1’}ka"(qt)qi+d’}qi. (14.15)

2431 J. Math. Phys., Vol. 24, No. 10, October 1983

Of course, this constant coefficient ordinary differential
equation (with g appearing as a parameter) can be solved
explicitly. Let a{g,¢ ) be the element

(a'(gr),..., a"(gr))
of C. Let

A(g) = Lhq) = (4%(g) (14.16)
be the n X n matrix which depends linearly on g.

Let

dig) = (dq) (14.17)

be the element of C", which depends linearly on the param-
eter g. Then

alg,t) =4 (g)”'[1 — exp[4 (g} 1d(g) + a(0) .

The solutions g — a{g) of the system (14.17) are sums
of exponential polynomial functions in the g’s; they are sums
of functions of the following form:

(14.18)

expla,g' + -+ a, g’ g, (14.19)

Jiseesj, integers, a,..,a, €C.

This determines the physical system completely: The Toda
lattice is one special class. Thus, in this case, we are able to
use one type of “function group” as an ansatz to determine
definitively a whole class of integrable systems.

15. INTEGRABLE SYSTEMS AND FUNCTION GROUPS
OF THE HYDROGEN ATOM-KEPLER PROBLEM TYPE

I will now abstract out of the standard*' Lie group-
theoretic treatment of the hydrogen atom a type of function
group that seems to be one step more elaborate than those we
have encountered in the study of the Toda lattice.

Let M be a symplectic manifold. Let

fnfz* {flvf2}

be the Poisson-bracket structure it determines on % (M ).
Choose indices and the summation convention as fol-
lows:

1<i, jgn, 1<a, b<m.
Suppose

(fg%h) (15.1)
are elements of % (M ) and

AL Ae A (15.2)

are numbers such that the following structure equations are
satisfied:

Ly =A0 1%, (15.3)
{f.g)=4¢g", (15.4)
{ghg®)=haif, (15.5)
O={fh}={g%hn}. (15.6)

Clearly, the ( /7, g°) form a function group, in Lie’s
sense. We are now in a situation where the full force of
Ehresmann’s theory of pseudogroups applies. In order to
study the pseudogroup generated by the vector field generat-
ed by 4, we define M as follows:
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M, ={peM: h(p)>0}, (15.7)
M_={peM: h(p)<0}, (15.8)
M,={peM: h(p)=0}, (15.9)
Mg ={peM: h(p)=E}. (15.10)

Then, the pseudogroup generated by the V., V. leaves these
subsets invariant. Of course, on the “energy surfaces,” M,
the pseudogroup is locally equivalent to a Lie group action.

I will use this type of example to pose a basic problem of
the theory: Classify locally and globally a function group of
this type and the type of physical systems they model. 1 plan
further work on this problem as well as development of its
physical ramifications in later papers in this series.
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We exhibit a remarkable connection between a hierarchy of higher-order special self-adjoint
ordinary differential equations and the description of motion of a cluster of particles in classical
mechanics. The cluster is assumed to consist of equal mass particles all moving in one dimension.
In a perturbation schema based on the first-order equation of motion of the center of mass point,
the time evolution of the moments of order m — 1 is governed by the solution of a special self-
adjoint equation of order m. A similar connection exists for the moments of a wave packet in

quantum mechanics.

PACS numbers: 03.20. + 1, 02.30.Hq

I. INTRODUCTION

Recently the present authors have discussed' a class of
special self-adjoint ordinary differential equations. Using
the notation of Ref. 1, hereinafter called I, the general mem-
ber of this class may be written symbolically as

L,p=0, m>3 (1.1)

where L, denotes a linear mth-order ordinary differential
operator in which the next to highest-order derivative is ab-
sent. The special feature of this self-adjoint operator is that
all its coefficients are expressed in terms of a single function,
say ¢ (¢ ), and its derivatives. Methods for constructingzm are
given in ], and the first three members of the class are the
following:

B+ 4¢p + 24p =0, (1.2)
p¥ + 1085 + 108p + 3(d + 36 %p =0, (1.3)
P + 2085 + 30p + 29 + 326 %p

+ 4 + 1666 )o =0, (1.4)

where overdots mean differentiation with respect to the in-
dependent variable ¢. Sapkarev has determined the form of
the sixth-order member? of this class, as well as the seventh-
and eighth-order members,* by starting with assumed solu-
tions and employing a process of differentiation and elimina-
tion. Indeed, an important property of the special self-ad-
joint hierarchy of equations (1.1) is that the general solution,
as was shown in I, can be written in the form

p=bu" "+ bu" W+ bou" T 4
+b, qu" i b v (1.5)

where ¥ and v are two linearly independent solutions of the
second-order equation

G+é(t)g=0 (1.6)
and the b,,...,b,, are arbitrary constants of integration. [In I

it was convenient to write solution (1.5) in terms of solutions
to the second-order equation

3
g + a(t)g =0,
g o (t)g
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in which a numerical factor dependent on the order m ap-
pears; since here we use (1.6), the numerical factors in (1.2)-
(1.4), etc., will differ from those in analogous equations in I.]
The special self-adjoint equation of order >3 can thus be
solved in terms of two linearly independent solutions to the
time-dependent harmonic oscillator equation (1.6), which
may be viewed as the lowest-order member of this class of
differential equations.

From our point of view of Sec. VI* of I, solution (1.5) is
not a surprising result. It follows naturally from a class of
nonlinear equations of order m, in p, for which we derived a
superposition rule for composing the solutions. In the deri-
vation of this superposition rule, which is of the form
p = x(t)r(7), dr = dt /x*, we find that r(r) must satisfy the
nonlinear equation

dmr K

dr" pm + 1/im — 1’

K = const, (1.7)

while the variable x(¢ ) is found to satisfy simultaneously a
hierarchy of m differential equations. The highest-order
equation L, x = 0 of this hierarchy is linear of order m, with
arbitrary coefficients, and the lowest-order equation of the
hierarchy is the second-order equation (1.6), the remaining
m — 2 equations being nonlinear. The requirement that x(¢ )
consistently satisfy all members of this hierarchy forces con-
ditions on the initially arbitrary coefficients of L,,x = 0 in
such a way as to yield the special self-adjoint differential
equation L, x = 0. The left-hand side of the nonlinear equa-
tion satisfied by p likewise takes the special self-adjoint form.
Therefore when K in (1.7) is put equal to zero our problem
reduces to the linear case d "'r/d7™ = 0. Since, as shown in I,
a particular solution to L, x = O is given by x(t) = u™ !,
where u(t ) is asolution to(1.6), we deduce solution (1.5) readi-
ly for any order m > 3. See I for details.

We thus arrive at the special self-adjoint differential
equation and its general solution entirely within a math-
ematical context detached from any physical motivation.
However, since the appearance of I, we have found that these
special self-adjoint equations do occur in very basic physical
problems. One such problem is the time evolution of the
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average moments of a one-dimensional cluster of classical
particles. This problem was first discussed by Andrews,’
who showed the connection between the mean-square posi-
tion relative to the center of mass and the third-order self-
adjoint equation (1.2). The primary goal of this paper is to
extend Andrews’ treatment to higher orders in his perturba-
tion schema and to show thereby the connection with the
higher-order special self-adjoint equations of 1. We shall
prove that our perturbation equations for the time evolution
of the moments of the particle cluster are solvable in terms of
solution (1.5). As a by-product of the present treatment we
obtain a set of m first-order differential equations from the
analysis of the moments of order m — 1 foreach m>3. When
these m first-order equations are combined appropriately
one obtains (1.1). Of course, m — 1 additional mth-order dif-
ferential equations can be similarly generated, whose exact
solutions can be obtained from operations on solution (1.5).

Instead of studying the time evolution of a cluster of
particles we could treat the evolution of a wavepacket in
quantum mechanics. The wavepacket problem has been dis-
cussed by Andrews in another paper.® See likewise the pa-
pers”® by Remaud and Hernandez, who also treat the quan-
tum problem. For simplicity, in this paper we shall discuss
only the one-dimensional classical cluster problem.

In Sec. II we review the work of Andrews® for the sec-
ond-order moments. We note in Sec. III the results of carry-
ing Andrews’ perturbation series to third- and higher-order
moments of the cluster. We relate the third- and higher-
order moments to fourth- and higher-order self-adjoint
equations. We conclude with suggestions for further work.

Il. CLUSTER DYNAMICS (SECOND-ORDER MOMENTS)

We follow the work of Andrews® and consider N parti-
cles of identical mass M undergoing one-dimensional motion
in the potential field V (x), the force on each particle being
expressed by
_ Vi

dx x=x' .
The index i = 1,2,...,N>3 labels the particles in the cluster.
To effect an economy of notation in subsequent equations,
we shall write (2.1) in the form
aV(x))

ax
Here the notation ¥ (x') means that the potential energy of
particle / of the cluster depends only on the position x* of that
particle in the potential field V'{x).
The center of mass of the cluster is here defined by

N )
S x

and the center of mass point X satisfies the equation of mo-
tion

M = (2.1)

Mx'= —

- 1
X= —
N

.1 ¥ avix)
Mx = — . 2.2
x N ,‘;1 axi ( )

We define the variable X ‘ as the position of particle / relative
to the center of mass point

Xi=x_% (2.3)
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The average of any quantity 4 ' related to the cluster will be
defined by

- 1 .
A= —Y 4]
V3
where the summation is understood to be over all particles of
the cluster. For example, the square of the position of the ith

particle from the center of mass is (X )%, and the average of
this quantity is thus given by

7__1_ 02
X _NZ(X). (2.4)

We refer to X 2 as a second-order moment. Two other sec-
ond-order moments of interest are

XX = %ZX'X" (2.5)
and
Xi= %z (X 2. (2.6)

With (2.3) and the definition of X it is a simple matter to
obtain the identity
IV 1 IV
ox' N ; xi
We now expand d¥ (x)/dx’ in a Taylor series about the cen-
ter of mass point. Thus we obtain a series in powers of
x' — X = X' of the form

MXi= (2.7)

Vix) _ VX' +3)
ox' Jx
WVE  FVE . 1 PVE e
= X —— (X
9% = X T X
. (2.8)

Now the terms of the right-hand side of (2.7) can be replaced
by a Taylor polynomial of any desired order. As a first-order
approximation keep the first two terms in expansion (2.8)
and obtain from (2.7) the equation

Xi=¢(t) X' =0, (2.9)
where
_ 13V
d(t)= YA (2.10)

Thus in this lowest order of approximation, the problem is ¥
uncoupled time-dependent harmonic oscillators for the N
particles about their center of mass. For this order, the equa-
tion satisfied by x follows from (2.2) and expansion (2.8) as
v (x)
dx
subject to the initial conditions X(f,) = X, X(£,) = X,. Notice
that this equation is the same differential equation as (2.1).
Therefore, in order to determine ¢ (¢ ), we must be able to
solve the original equation of motion (2.1). Because of this
fact the perturbation scheme that we develop in this paper
may not be of great practical utility. However, we do not
propose a perturbation scheme for solving the equation of
motion, but rather a scheme for relating the higher-order
moments of the cluster to the lowest-order motion of the

M = , (2.11)
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center of mass point. Equation (2.11) defines the center of
mass trajectory of the cluster in first order. Consequently, by
definition, we shall carry out our perturbation expansions
about this first-order trajectory of the center of mass. We
thus will determine X{t ), and subsequently ¢ (¢ ), from (2.11),
and we use these same functions in all higher orders of the
expansion. o L

We return to the moments X 2, XX, and X 2 and intro-
duce, following Andrews, the notation

x=X% (=X, o=X2 (2.12)
We can now use the approximate equation of motion (2.9)
and the definitions (2.12) to derive equations satisfied by the

second-order moments. These equations were obtained by
Andrews,’ and they have the forms

X =126 (2.13a)
E=w—¢y, (2.13b)
o= —24¢. (2.13¢)

By differentiation one can eliminate §{ and o from the set
{2.13) to obtain a third-order equation for y, i.e.,

¥ +4% + 28y =0, (2.14)
which is identical to (1.2). Hence, from (1.5) we can write the
general solution to (2.12) in the form

¥ = by + byuv + by?, (2.15a)

where u and v are linearly independent solutions of (1.6). One
may now use solution (2.15a) and the first-order equations
(2.13) to find the solutions for { and w; these take the forms

& = byt + 3b,(ud + wv) + by, (2.15b)
@ = b, + byud + by {2.15¢)

The constants b, b,, and b, can be determined from the
initial values of y, ¢, and . The moments £ and & given by
(2.15b) and (2.15¢) satisfy the linear third-order equations

E—(8/8) +49C+2036 — 206 /615 =0,  (2.16)
& —3d/P)d+ (4 +36%/82— ¢ /d)o
— 260 =0, (2.17)

respectively. These last two equations can each be found by
eliminating variables in the first-order set (2.13). Unlike

(2.14), satisfied by the spatial moment y, (2.16) and (2.17) are
not self-adjoint. A similar remark holds for all higher orders.

lIl. CLUSTER DYNAMICS (THIRD- AND HIGHER-ORDER
MOMENTS)

In the next order of approximation we retain the first
three terms of expansion (2.8), and we have from (2.4) the
equation of motion

Xi= —g(t) X' —0(t)XP+6() X7, (3.1)
where ¢ () is given by (2.10) as before and the new function
€ () is defined by

31

()= — 1 4 V(x)’

QM ox®
where x(¢ ) is the first-order center of mass trajectory defined
by Eq. (2.11). For this perturbation treatment to be useful,

(3.2)
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the terms in 6 appearing in (3.1) should be small compared to
the leading term in ¢ in the sense that

I6X |»|6X 2. (3.3)

Assuming the validity of (3.3), which is a condition on how
rapidly the potential may vary, the terms in € in {3.1) give a
small correction to the motion.

Consider next the second-order moments defined in
(2.11). At our higher level of approximation, the first-order
equations satisfied by y, £, and @ are now given by

¥ =2¢, (3.4a)

§=w—g¢y—06m, (3.4b)

o= —2¢f — 260, (3.4¢)
where 77 and o are third-order moments defined by

n= X3, (3.5a)

o=XX. (3.5b)

Thus, the corrections to second-order moment equations
{2.13) involve the terms in @ in (3.4b} and (3.4c) which in turn
introduce the third-order moments 7 and ¢. The other third-
order moments are

xk=XX2 (3.5¢)

r=X7 (3.5d)

Next, we must find the equations satisfied by the third-
order moments 7, o, x, and 7. Using the definitions (3.5)

along with the equation of motion (3.1) we obtain the system
of first-order equations

7 = 30, (3.6a)
o=2k—¢n—0 X*+6y?, (3.6b)
k=71 —2p0 — 20X °X + 20y¢, (3.6¢)
= — 3¢k — 30X X2 + 3byo. (3.6d)

Note that the third-order moment equations contain

fourth-order moments X %, etc. Clearly, in order to obtain a
closed set of equations, we must neglect the terms involving
fourth-order moments in (3.6). To the same order of accura-
cy, we can also neglect the other terms in 8. That those terms
in @ are small compared to the terms in ¢ also follows from
the perturbation inequality (3.3). It thus suffices to solve the
third-order moment equations (3.6) in the linear form

7 = 30, (3.7a)
o =2— ¢, {(3.7b)
K=1T—2¢0, (3.7¢)
T= — 3¢« (3.7d)

These equations are to be solved for the third-order mo-
ments, and then the solutions are to be used in (3.4) to obtain
the perturbed equations for the second-order moments.

To effect the required solution we eliminate ¢, x, and 7
from (3.7) and thus arrive at the differential equation satis-
fied by 7, i.e.,

7Y + 1083 + 1087 + 3(¢ + 3¢ %)y =0, (3.8)

which is the fourth-order special self-adjoint equation (1.3).
The general solution for % from (1.5) thus takes the form
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7= b’ + buv + byuv® + by’ (3.9a)

Using solution (3.9a) and the first-order system {3.7) we
obtain the solutions for o, x, and 7 as the forms

o = bl + 1b,uiw + uP0) + 1b5(2uvd + v7i) + bw?d,

(3.9b)

K= byui® + b(2und + 47v) + 1652000 + ui’) + bwi?,
(3.9¢]

7= byit’ + 1byti® + by + by, (3.9d)

If the initial values »{0) = 1, #(0) = 0, v(0) = 0, and ¥(0) = |
are chosen then the constants & have the values

bi=mny b,=30, b3=3k, b,=1,
Equations (3.9) can then be written in the matrix form
n o
TN= 7] Z" or ()= 4()7y  (3.10)
T TZ

where the 4 X 4 evolution matrix .#(¢ ) can be found easily
from (3.9).

The final step at this level of correction to the second
order moments is to return with solutions (3.9) and solve (3.4)
for the adjusted second-order moments. Note that ¢ () and
0 (t) in these equations are known functions of time given by
(2.10) and (3.2), respectively.

Before leaving this set of equations, we remark that the
inverse of (3.10),

P o= M), (3.11)

leads to four first integrals 7, 0y, &,, and 7, in analogy to
those found by Andrews’ for y,, £, @, Using the latter three
quantities Andrews was able to give a new derivation of the
well-known Lewis invariant. On the other hand, Hernandez
and Remaud® have discussed the quantum-mechanical as-
pect of analogous invariants involving second-order mo-
ments. We shall not present the explicit forms of the invar-
iants 7,, 04, Ko, and 7, since they are not needed in this paper.

The procedure to extend the analysis to higher approxi-
mations is now clear. The inclusion of the next term from
{2.8) into an approximation to the equation of motion (2.7)
will introduce a new function

o) = —— IV

3IM ox*

and associated cubic nonlinearities. The equations for the
second- and third-order moments will now involve fourth-
order moments. There are five of these moments, i.e.,

X* XX, XX?% XX X* (3.13)
If one denotes these quantities by a new set of symbols then,
as before, by differentiation and appropriate substitution for
X one will obtain a set of five first-order equations in the
new variables. One may use the condition that terms involv-
ing @ (¢ )and y(t )aresmall compared tothosein¢ (¢ ). Keeping
only the largest terms in these five moment equations, one
thus obtains a set of five linear first-order equations that will
yield the fifth-order self-adjoint equation (1.4) for the spatial
X* The solution to (1.4) follows of course from

(3.12)

momentp =
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(1.5); the general solutions for the four remaining moments
now readily follow. These solutions are then used to obtain
corrections to the third-order moment equations and then to
the second-order moment equations.

The foregoing procedure can be continued to any high-
er order in the perturbation series. At the (m — 1)st order of
moments we arrive at m first-order equations which become
linear upon dropping all terms in 8 {¢), (¢ ),... and keeping
those in ¢ (7). In a systematic notation, the first-order system
under discussion takes the form

a,=(m-—1) a,,
a,=(m—2) ay— é a,
ay=(m—3) a,— 2¢ ay,
(3.14)
a, 2a, ,—(m-=3)¢a,_,,
a,, _, = a, —m-=29¢a, ,,
a, = ~(m—-1)¢ a,, .

Eliminating all the other a; in favor of the spatial moment

a, = X" ! willlead to the mth-order self-adjoint equation
(1.1). Solution (1.5) and system (3.14) can now be combined
to yield the solutions for the remaining m — 1 moments.
These m known quantities can now be used to correct the
lower-order moment equations from the {(m — 2)nd order
down to second order (m>4).

There is thus a direct relationship between the forego-
ing perturbative treatment for the moments of a cluster of
particles and the special self-adjoint equation introduced in
I

IV. CONCLUSIONS

We have demonstrated in this paper a close connection
between the description of motion of a cluster of particles
and the hierarchy of special self-adjoint differential equa-
tions of I. These equations were arrived at in I from math-
ematical premises without any hint of physical origin. It is
remarkable that the very same hierarchy of differential equa-
tions arises in a basic way in Newtonian mechanics. The
special self-adjoint differential equation is in fact the key
element to effect a perturbative solution for the time evolu-
tion of the moments of the particles within a cluster.

We fully expect the analysis of this paper to bear a close
analogy to that required for the description of the higher-
order moments of a spreading quantum-mechanical wave-
packet. Extending the work of Andrews® and of Remaud
and Hernandez”™ to third-order moments and beyond is an
interesting topic for further work.

We concur with Andrews® that the present study can be
extended to include classical particles with unequal mass,
motion in three dimensions, mutual interactions between
particles, and external forces. Each of these extensions is an
important topic for future work.
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(a) Eq. (6.13) should read p = [5,x3 + 2b,x,x, + b, '(b3 + K)x1 |77,
where x, and x, have unit Wronskian;

(b) Eq. (6.14) should read § + 3a,p + 34,0 = Kp™ %

(c) Eq. (6.15) should read p = xr = (b, X, + b,X,)r{7);
(d)Eq.(6.16)shouldreadr” = Kr~%,dr = dt /X, X = b X, + b,X,;finally,
the next to last sentence in this section should read “For the general solu-
tion of {6.7) we need at least m — 2 constants of integration from (6.9).”
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Lagrange equations are derived for a spinning gas cloud. The rotational and vortex velocities are
treated as independent variables and their defining equations as equations of constraint.
Application of the formalism of Lagrange multipliers to this case of 27 variables and 18 equations
of constraint yields nine final equations which are simple in form and contain only variables

explicitly included in the kinetic and potential energy.

PACS numbers: 03.20. +1,47.30. + s

1. INTRODUCTION

The internal and rotational motions of a cloud of com-
pressible gas expanding freely in an otherwise empty space
was treated by Dyson.' He studied the problem under the
assumption that the position vector y(¢ ) at any time of each
element of the gas is a linear function of its initial position
a = y(0), namely,

y(t) = Fa, (1)
where nine components F; are functions of time alone. This
ansatz was first introduced by Dirichlet® into the problem of
equilibrium figures of gravitating ellipsoids. Those who are
not familiar with this field often get a misleading impression
from Eq. (1) that only trivial results can follow from such a
simplifying assumption. However, prior to Dirichlet, only
the effect of rotation was considered on the equilibrium fi-
gures of gravitating ellipsoids. Now, the assumption of Eq.
{1) adds internal vortex motion as well as the pulsation of the
semiaxes into the study of the problem. Furthermore, Eq. (1)
contains the interactions of these three types of motion. Even
with the aid of modern computers, these interactions are not
yet fully explored, and Chandrasekhar’s book? is a conven-
ient source for a modern account of this problem. For those
who enjoy the study of classics, Riemann’s paper* is a Chef-
d 'oeuvre of extracting a great wealth of beautiful results from
Dirichlet’s assumption. Equation (1) is one of those examples
which illustrates in a rather dramatic way that nature is pro-
found in its simplicity. Dyson found that these solutions
have a symmetry group O (4) whose six generators are con-
stants of the motion. Utilizing the isomorphism between
[0 (3)x O(3)] and O (4), he introduced a symmetric traceless
(4 4) matrix in place of the asymmetric (3 X 3) matrix £
and gave the nine equations of motion an elegant form [Eqgs.
(47) and (48) in his paper]. But his equations, even in the
symmetric and elegant form, are essentially Newtonian.
Here, the Lagrange equations are derived for this problem.
The difficulty in applying the Lagrangian formalism to this
problem lies in the defining equations of the components of
the rotational angular velocity vector in terms of the ele-
ments and the derivatives of the elements of an orthogonal
matrix. Here, we also have an additional vortex vector relat-
ed in a similar manner to a second orthogonal matrix. The
method of overcoming this hurdle was first employed by
Kirchhoff ® in his derivation of the equations for the transla-
tion and rotation of a rigid body in a fluid. Following
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Kirchhoff, we will initially treat the rotational and vortex
velocities as independent variables and regard their defining
equations as the equations of constraints. We also have the
twelve orthogonality conditions of the two orthogonal ma-
trices. After carrying through the formalism of Lagrange
multipliers for 27 variables with 18 equations of constraints,
we will obtain, in a simple final form, the equations for the
three major axes, the three components of the rotational ve-
locity, and the three components of the vortex velocity. Our
derivation and results are applicable to problems more gen-
eral than Dyson’s case.

Il. PRELIMINARIES

In this section, we briefly describe those pertinent re-
sults from Dyson’s work which are needed for our derivation
of the equations in the Lagrangian form. For details, we refer
the reader to Dyson’s paper.

First, we represent the nine variables F;, in Eq. (1)in the
form

F=0,D0,, {2)

where O\(a;;) and O,(4;, ) are orthogonal and D is diagonal
with (D, D,, D,) as its diagonal elements. Dyson assumes
that the potential energy U is a function of the temperature
of the gas and shows that it depends only on & = det F. Now,
due to the decomposition Eq. (2) and the orthogonality of O,
and O,, we have

b=D,D,D;,, (3)

so that the potential energy U is a function of D, D,, D,
alone.

Next, before we define the rotational velocity o, we in-
troduce an antisymmetric matrix K, whose components are
related to the components of by K, = €,,,,w,,, where
€,,, = 0if /, m, n are not distinct and ¢,,,,, = + 1 {— 1)if
[mn is obtained from 123 by an even (odd) number of ex-
changes. Now, the defining equation for o from the orthogo-
nal matrix,0, reads

K=0]0, (4)

where the dot denotes differentiation with respect to time
and the superscript T indicates the transposition of the rows
and columns. Similarly, we define the vortex velocity ¢ from
the second orthogonal matrix O,

H=010,, (5)
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where the antisymmetric matrix H is related to the vector ¢
by H,, = €,,,4,- The kinetic energy T will be a function
explicitly of D,, D,, @, and ¢ alone. But because the velocities
o and ¢ are related to @, @, A;, and 4, through Egs. (4)
and (5), we cannot take advantage of this simple feature of
the kinetic energy unless we treat & and ¢ as independent
variables and regard the defining Eqs. (4) and (5) as equations
of constraint. By raising the status of « and ¢ to the indepen-
dent variables, in addition to D,, ;;, 4;;, we now have 27
variables and 18 equations of constraint, of which the re-
maining 12 are the following orthogonality relations.

070, —1=0, (6)
and
OZTOZ - I = 09 (7)

where [ is the unit matrix.

Ill. DERIVATION OF LAGRANGE EQUATIONS

When there exist equations of constraint, the La-
grangian L = T — V must be extended to include the sum
3% u; f,, wheref; represents the left-hand side of the equa-
tions of constraint when written in the form f; =0, and y;
are the Lagrange multipliers.

18

i=1
407 5L _,, )
dt dq; dq;

Both the number of variables and the number of equations of
constraint may seem unusually large, but due to the simpli-
fying fact that different sets of variables enter separate parts
of the extended Lagrangian, the computation is relatively
easy in spite of the number of variables involved.

First, we use the three defining equations {4) for w, as
equations of constraint and multiply each equation by multi-
plier (2;, respectively, for the inclusion in Eq. (8). Then, be-
cause there are no derivatives o, of w, in Eq. (8), we immedi-
ately obtain

IT _ 2, (10)
Jw;
from Eq. (9). Similarly, denoting the multipliers for Egs. (5)
as P;, we get

T _ g,
¢,
Next, the set of nine variables @, enter only through Eqs. (4)
and (6), and for these variables, Egs. (9) becomes

d

G!m = 'aTt' (aljﬂjm
There are nine equations G,,, = 0 for all combinations of
I, m =1, 2, 3, and the repeated index of j implies a summa-
tion. A is a symmetric matrix whose components A,,, are the
multipliers 4,,, A,,, 4,, = A,, etc. for Egs. (6). For conve-
nience, the diagonal elements are divided by two before they
are used as multipliers for Egs. (6). 2,,, = €,,,,42,,.

In order to eliminate A, from Eq. (12}, we multiply

(11)

)—(aA ), =0. (12)

2439 J. Math. Phys_, Vol. 24, No. 10, October 1983

each of the nine equations G,,, = 0 by €, ;,, (for fixed
n =1, 2, 3) and add the nine products to obtain

4

dt
We need the relations a,; = a,, @33 — @,;303, etc. between
the elements of an orthogonal matrix and its cofactors in the
above derivation. We also replaced the multipliers 22, by 3T /
dw, obtained from Eq. (10). 3T /3w, represents the compo-
nents of the angular momentum in the moving coordinate
system of O, and from Eq. (13), its components in the fixed
system are constant.

(a,,,g—T-—)=O, n=1.2.3. (13)
(2F

a9 1. (14)

Again, if we multiply each of Egs. (12) by €,,,,,;;; (for fixed
n =1, 2, 3,) and add the nine products, we get

d dT aTr
- =€y — (15)
dt Jdw, dw,,
Equations (14) represent the conservation of the angular mo-
mentum of the system. Equations (15) describe the variation
with time of the angular velocity in the O, system.
In a similar manner, we obtain the corresponding equa-
tions for the vortex part

ar
| — = n 16
Uiy T (16)
and
d T ar
—_ = —_— 17
dt a¢n 6n1m¢1 a¢m ( )

We note that the coefficients of T /3¢, in Eq. (17) are the
vortex components ¢,, not the rotational components ,.
This formal separation & and ¢ in the final Egs. {15) and (17)
is not real, because of the simultaneous entry of both ¢ and ®
in the kinetic energy 7, and these two motions do interact
despite the fact that they appear to be separated in the out-
look of Lagrange equations (15) and (17).

Finally, for the three variables D, which do not enter
into any of the equations of constraint, we need only the
original Lagrangian and obtain

S = 0 i=123. (18)

Here, we note that D, enters in the kinetic energy term 7" as
well as the potential term U so that we cannot separate the
Lagrangian into L = 7 — U and use T and U separately in
the first and second terms of Eqs. (18). Physically speaking,
D} + D etc. represent the moments of inertia and, thus,
enter in the kinetic energy term. In Dyson’s case, the poten-
tial U depends only on the product D,D,D,.

IV. DISCUSSION

The final apparent form of the equations we obtained in
Egs. (15),(17), and {18) is indeed that of the familiar Lagrange
equations. However, o and ¢ are not generalized velocities
of some hypothetical generalized coordinates. In fact, in the
rigorous derivation given above, both @ and ¢ initially were
introduced as independent variables, together with their de-
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rivatives & and ¢, which did not occur, but in the final La-
grangian form, Eqgs. (15) and (17), both @ and ¢ enter with

the appearance of generalized velocities. Kirchhoff ’s power-
ful method here brings out, in the form of the basic equations
of motion, the deeply lying consistency of Dyson’s formula-
tion of the problem of a spinning gas cloud.

Finally, the derivation given is applicable to problems
more general than Dyson’s case. If a dynamical system has a
kinetic energy which is a function of D,, D, ®, and ¢, and a
potential energy depending only on D;, the equations de-
rived here can be applied mutatis mutandis. The separation
of variables in Egs. (15}, (17), and (18) and the relatively wide
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choice of T and U which satisfy the conditions in this deriva-
tion of the equations should be useful in a search for analyti-
cally soluble cases.
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We analyze the difference between classical mechanics and quantum mechanics. We come to the
conclusion that this difference can be found in the nature of the observables that are considered for
the physical system under consideration. Classical mechanics can only describe a certain kind of
what we called “classical observable.” Quantum mechanics can only describe another kind of
observable; it cannot describe, however, classical observables. To perform this analysis, we use a
theory where every kind of observable can be treated and which is in a natural way a
generalization of both classical and quantum mechanics. If in a study of a physical system in this
theory we restrict ourselves to the classical observables, we rediscover classical mechanics as a
kind of first study of the physical system, where all the nonclassical properties are hidden. If we
find that this first study is too rough we can also study the nonclassical part of the physical system

by a theory which is eventually quantum mechanics.

PACS numbers: 03.65.Bz

INTRODUCTION

What is the relation between classical mechanics and
quantum mechanics and in which aspects are they different
physical theories? This is the question that we should like to
investigate. Many different interpretations of quantum me-
chanics have been put forward during the years. It is indeed
not straightforward to interpret the complicated mathemat-
ical formalism on which quantum mechanics is based.

For classical mechanics there have never been many
discussions about the interpretation of the theory. Probably
this is so because the interpretation of classical mechanics
seems to be straightforward. We shall show, however, that
there is not so much difference between the two theories and
that a lot of the mystery of quantum mechanics is already
present in classical mechanics.

Often one tries to see classical mechanics as a kind of
limit of quantum mechanics (e.g., for ~—0). We think that
this is not a correct way to see the relation between the two
theories, because it starts from the idea that quantum me-
chanics is a more general theory than classical mechanics. It
becomes more and more clear that this is not the case. First
of all, it seems to be rather impossible to give a satisfactory
description of a macroscopical system that is well described
by classical mechanics by using quantum mechanics. This
should, however, in principle be possible if quantum me-
chanics were a more general theory than classical mechan-
ics. But even for microscopical systems already a long time
ago a shortcoming of quantum mechanics was noted. It be-
came clear that some superpositions of states of microscopi-
cal systems never do occur, although they are contained in
the description of the system by quantum mechanics. To
take this fact into account, one introduced the concept of
“superselection rule.” A superselection rule is a rule that
forbids certain superpositions. It is not very satisfactory that
one has to introduce this concept a posteriori in the theory.
There exist, however, more general theories than quantum
mechanics where the possibility of describing superselection
rules is present from the start. This is, for example, the case
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in the algebraic approach to quantum mechanics and also in
the quantum logic approach.

That it is possible to have also continuous superselec-
tion rules was shown by Piron' and used by Piron to give a
description of what he calls a Galilean particle”. In this de-
scription time is considered to be a continuous superselec-
tion variable. We shall analyze how these superselection
rules are described in this quantum logic approach. Al-
though superselection rules must not be introduced a poster-
fori in this theory anymore, we shall not be satisfied with this
description. Indeed, we should try to ‘““‘understand” why and
when these superselection rules are present. This shall follow
immediately out of the analysis that we will make in the
following. There is another reason why we are not satisfied
with the state of affairs as it is now. In quantum logic a
physical system is described by the lattice of its properties
(yes—no experiments); often the properties of a physical sys-
tem are also called propositions; this, however, makes it pos-
sible to confuse with the term proposition of logic). This lat-
tice plays the role of the complex Hilbert space of ordinary
quantum mechanics. To be able to show that the lattice can
be decomposed in the direct union of irreducible lattices [see
Ref. 2, Theorem (2.45)] and in this way introduce superselec-
tion rules, several axioms have to be satisfied in this lattice of
propositions. We showed that some of these axioms, namely
the weak modularity and the covering law, are axioms, that
cannot be satisfied in nature if one wants to be able to de-
scribe separated physical systems.’~> As we shall show, it is
possible to find a decomposition of the lattice of propositions
as a direct union of irreducible lattices without the weak
modularity to be satisfied (neither the covering law and
neither the atomicity of the lattice has to be satisfied). To be
able to do this we have to use a different approach to the
problem. In this way we really understand the nature of
these superselection rules and also the relation between clas-
sical mechanics and quantum mechanics.

What is now the most important difference between a
classical theory and a quantum theory? In both theories the
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concept of “state” of the physical system and the concept of
“observable” is defined. In classical mechanics the state of
the physical system is represented by a point in the state
space of the system and an observable is represented by a
function of the state space to an outcome set. If the system is
in a state p and f'is the function corresponding to a certain
observable, then f{ p) is the value that this observable “has.”
In classical mechanics we do not specify what we mean by
this word “‘has.” In quantum mechanics the state of the
physical system is represented by a ray in the Hilbert space of
the system and an observable is represented by a self-adjoint
operator on the Hilbert space. There is a collection of states,
namely the eigenstates of the self-adjoint operator, such that
when the system is in one of these eigenstates, we can predict
that if we should perform the experiment corresponding to
the observable in question, we would find the eigenvalue cor-
responding to the eigenstate is question for the observable. If
the system is not in an eigenstate, we cannot make a predic-
tion about the value of the observable for an experiment.
What is now the difference between these two theories? First
of all, we can remark that quantum mechanics is much more
specific and detailed while classical mechanics is rather
vague. To analyze the real difference, we shall be obliged to
specify more in detail what classical mechanics means with
the word “has.” Often it is claimed that classical mechanics
is a theory that neglects the effect of the measurement, or less
strong classical mechanics is a theory where the effect of the
measurement can be taken into account while in quantum
mechanics this is not the case anymore. This is then asserted
to be the difference between the two theories. This difference
does not follow out of an analysis of the two theories, but
comes from the intuitive idea that a microscopical system is
more easily perturbed by a macroscopical measuring appa-
ratus than a macroscopical system. It reduces classical me-
chanics to a very idealized theory, which, as we shall see, is
not necessary at all. We should like to propose a concrete
example of a physical system that we shall use to make our
analysis. Let us consider a physical system which is a piece of
wood. We should like to test whether the piece of wood
burns well or not. A possible test consists of taking the piece
of wood and setting it on fire. In general, when we perform
the test on a piece of dry wood, the piece of wood will be
destroyed by the test. However, for a piece of dry wood we
can “predict” that if we should perform the test, the piece of
wood would burn. This is the reason why we give the proper-
ty of “burning well” to such a piece of dry wood. What we
want to point out is that for a test, in general, there are two
different aspects that need to be analyzed.

First of all, there is the aspect concentrated on the result
of the test. The aim of a physical theory of the physical sys-
tem is to “‘predict ’ the result of a certain test, and this predic-
tion is done before the test is carried out and no matter
whether the test will be carried out. For the case of the piece
of wood and the test that we proposed, the property of
“burning well” must be contained in a physical theory of the
piece of wood. There is another aspect concentrated on the
performance of the test and the changing of the state of the
physical system by the performance of the test. In the first
place it is not the aim of a physical theory of the physical
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system to describe this changing of the state. This must be
done by a physical theory of the measuring process which is,
in fact, a physical theory of the joint system of the measuring
apparatus and the physical system. At first sight it seems to
be artificial to make a distinction between these two aspects.
It is, however, interesting to make this distinction because in
general the joint system of the measuring apparatus and the
physical system is much more complicated than the physical
system itself. As a consequence, it will be much easier to
make a physical theory where in the description of the phys-
ical system the first aspect is treated. It is also interesting to
make this distinction, because the distinction is also made in
the two existing physical theories, classical mechanics and
quantum mechanics. In classical mechanics only the first
aspect of the measurement is considered. The theory does
not describe the changing of the state of the system during a
measurement. The theory, however, makes predictions
about the results of the measurements independently
whether they change the state of the system or not. Hence it
is not correct to say that in classical mechanics only mea-
surements that do not change the state of the system are
considered. Also in quantum mechanics practically only the
first aspect of the measurement is also considered. Often it is
pretended that the changing of the state is also described by
quantum mechanics, in the sense that the state of the system
after the measurement is taken to be the eigenstate corre-
sponding to the value of the observable that has been ob-
tained after the measurement. This is, however, only true for
a special kind of measurement, which were named by Pauli®
measurements of the first kind. A spin measurement by the
Stern—Gerlach method is such a measurement of the first
kind. It would be very easy to define also measurements of
the first kind in classical mechanics. For these measure-
ments also in classical mechanics the theory would then de-
scribe the changing of the state of the system for such a mea-
surement. The measurement to test whether the piece of
wood burns or not is not a measurement of the first kind
since if the test is performed and we have gotten the answer
yes, the wood does not burn anymore.

Often it is also claimed that the fundamental difference
between classical mechanics and quantum mechanics is the
fact that in quantum mechanics certain observables cannot
be measured together, while in classical mechanics every two
observables can be measured together. Usually one refers to
measurements of the position of a physical system and the
momentum of a physical system. Again in this statement no
distinction is made between the two aspects of the measure-
ment. If we consider the second aspect, namely the possibil-
ity of performing the measurement and the possibility of de-
scribing the changing of the state by the performance of the
measurement, then almost never can two measurements be
performed together, neither in classical mechanics nor in
quantum mechanics. Since classical mechanics does not
treat this second aspect of the measurement, no distinction is
made in classical mechanics between observables that can be
measured together and observables that cannot be measured
together; but clearly both sorts of observables do exist. In
quantum mechanics the concept of compatibility of observa-
bles is introduced. Two observables are compatible iff their
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corresponding operators commute. What does this mean?
This means that there exist a complete set of states such that
every state of this set of states is an eigenstate of the two
observables. Hence for such a state we can predict the value
of both observables. However, from the theory does not fol-
low at all that such compatible observables can be measured
together, as is often vaguely stated. This can only be deduced
if we assume that we allow only measurements of the first
kind. So we see that compatibility of observables is not so
easy to interpret if we think of the second aspect of the mea-
surement. For the first aspects of the measurements the
meaning is very clear; namely, it means that there exists a set
of states such that when the system is in one of the states of
this set the value of both observables can be predicted.

So we can conclude from this analysis that there is no
difference between classical mechanics and quantum me-
chanics if we regard the second aspect of the measurement.
In both cases the state of the system is very often changed by
the performance of the experiment. There is, however, a fun-
damental difference between the two theories concerning the
first aspect of the measurement, namely the possibility in
being able to predict the outcome of a measurement. In clas-
sical mechanics, if we consider an arbitrary observable, then
for an arbitrary state of the system we can predict the out-
come of an eventual measurement of the observable. In
quantum mechanics this is only the case for states that are
eigenstates of the operator corresponding to this observable.
It seems to be so that when the system is not in such a state,
the observable is not an “‘element of reality” for the system in
question.

We use here the word “element of reality” as it was
introduced by Einstein, Podolsky, and Rosen.” It is this dif-
ference that gives rise to the uncertainty relations of Heisen-
berg for two observables that cannot be predicted together
(that are not an “element of reality” at the same time.) Again,
it is not the fact that they cannot be measured together that
gives rise to the uncertainty relations. Since in classical me-
chanics an arbitrary observable is always an element of rea-
lity for the system (we can always predict with certainty the
result of a measurement for a certain observable), for every
couple of observables, each observable is, of course, also, at
the same time as the other one, an element of reality for the
system, this independently of whether the observables can be
measured together or not.

We want again to call attention to the fact that, to be
able to make a prediction for two observables at the same
time, it is not at all necessary to be able to measure the obser-
vables at the same time. Let us consider again the example of
the physical system which is a piece of wood. We are going to
consider two observables. The observable ¥ which consists of
testing whether the piece of wood burns well and the obser-
vable 6 which consists of testing whether the piece of wood
floats on water. Both experiments change in general the state
of the piece of wood and it is clear that they cannot be per-
formed together. We can, however, for every state of the
piece of wood predict whether it will burn well and whether
it will float on water, and we can make this prediction at the
same time. This fact is analyzed in greater detail on the same
example in Refs. 3 and 4 and also can be retraced in the
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definition of the product of two questions as defined by Piron
in Ref. 2. After this analysis it becomes clear that we can
distinguish very well between the observables of classical
mechanics and the observables of quantum mechanics.

Suppose now that we have a physical system S and sup-
pose that we know what an observable is for such a system S;
then it is very easy to define the concept of ““classical obser-
vable” for such a system §, and this by using only experimen-
tally verifiable statements.

Definition: An observable of a physical system is a clas-
sical observable iff for every state of the physical system we
can predict the value of the observable in this state.

The observables used in classical mechanics are classi-
cal observables. In quantum mechanics none of the observa-
bles used is a classical observable. This fact is already an
indication of the fact that quantum mechanics is perhaps not
a more general theory than classical mechanics, because, as
we shall explain in the following, also microscopical systems
have in general classical observables. There are just these
classical observables that give rise to superselection rules.
The idea of characterizing a classical system by the fact that
for an arbitrary experiment on such a system for any state of
the system the outcome of the experiment is certain can be
found in Ref. 8. There is also emphasized that such an hy-
pothesis is not equivalent to the hypothesis of determinism of
the outer world.

1. THE DESCRIPTION OF SUPERSELECTION RULES IN
THE QUANTUM LOGIC APPROACH

As we remarked already, if one wants to describe super-
selection rules in quantum mechanics, one has to do thisa
posteriori by decomposing the Hilbert space into coherent
subspaces. For the case of continuous superselection varia-
bles one Hilbert space is not appropriate anymore and a set
of Hilbert spaces 5%, is needed. This set of Hilbert spaces
find their “natural” representation in the direct union of the
irreducible Hilbert space lattices P (5%”;), where P(5¢;) is the
lattice of all closed subspaces of the Hilbert space 57 . This is
the way of describing superselection rules as introduced by
Piron,’ and this is also the way in which superselection rules
appear in quantum logic. We shall shortly explain this struc-
ture of direct union because we shall find a similar structure
if we try to entangle the classical part and the nonclassical
part of the description of a physical system.

In quantum logic a physical system is described by the
collection of all the properties of this physical system. A
property is in fact a yes—no observable {an observable having
two possible outcomes yes and no). In classical mechanics
the yes—no observables are represented by functions on the
phase space to the set {0,1}. The set of all these functions
forms a complete Boolean algebra. In quantum mechanics
the yes—no observables are represented by the projection op-
erators of the Hilbert space. The set of all these projection
operators forms a lattice that is complete, orthocomple-
mented, weakly modular, and atomic. It is never a Boolean
algebra if the dimension of the Hilbert space is greater than
1. Now a complete Boolean algebra is also a complete ortho-
complemented weakly modular lattice. In quantum logic
one postulates therefore often that the set of properties con-
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cerning a physical system is a complete orthocomplemented
weakly modular lattice. Let us shortly define what is a com-
plete orthocomplemented weakly modular lattice.

Definitions 1.1: (i) A set 7 is a “partially ordered” set, if
there exists a relation which has the properties

a<a,
a<band b<c=a <o,
a<band b<a—a =b.

If we have a family a; of elements of 7 we will denote the
infimum of this family by A,aq; provided that this infimum
exists. We will denote the supremum of this family by Vg,
provided that this supremum exists. So we must have

x<a; ¥V isx<Aa,
1

a, <y VisVae <y

{ii) A partially ordered set . is called a “‘complete lat-
tice” if, for each family g,€.%’, A,aq; and V ,a, exist.

(iii) If 7 is a partially ordered set, we will say that .7 is
orthocomplemented iff .7 has a least element O and if there
exists a map a—a’ of .7 onto itself which satisfies

a<b, then b'<d,

”

a"=a and ald =0,

the mapping a—a'is called an orthocomplementation and a’
is called the orthocomplement of a.

{iv) If .7 is a partially ordered set that is orthocomple-
mented, then 7 is said to be weakly modular iff

@avb')Ab=a.

Often in quantum logic one postulates only a weaker
structure for the set of propositions of a physical system, this
depending on what one wants to do; but one can say that the
structure of a complete orthocomplemented lattice is the one
used when one wants to do physics with quantum logic (see
Ref. 2). A complete orthocomplemented weakly modular
lattice where the distributive law between the infimum and
the supremum is valid is called a Boolean lattice or a Boolean
algebra. One can define the concept of compatible properties
in quantum logic.

Definition 1.2: Two properties a, b of a complete ortho-
complemented lattice are compatible iff the lattice generated
by {a, a’, b, b'} is a Boolean lattice.

For quantum mechanics we have that two properties
represented by projection operators are compatible iff the
projection operators commute. In classical mechanics every
pair of properties is a compatible pair. On the other hand, if
every pair of properties of a complete orthocomplemented
weakly modular lattice is compatible, then this lattice is a
Boolean lattice. This is the reason why in quantum logic one
sees the difference between classical mechanics and quan-
tum mechanics as a difference in structure of the set of prop-
erties of both theories. Although a great step forward has
been done, in the sense that in quantum logic both theories
can be described by the same formalism, we are not totally
satisfied with this approach. Indeed expressing the classical-
ity of a yes—no experiment by means of this relation of com-

fora<b wehave
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patibility is not very satisfactory because this relation of
compatibility is an algebraic relation that is, just as the rela-
tion of commutativity of operators in ordinary quantum me-
chanics, not physically interpretable.

Let us give now the construction of the direct union of
lattices and then explain how superselection rules appear in
quantum logic.

Definition 1.3: Suppose that .7, is a collection of com-
plete lattices. We shall denote the direct union of the .7, by
@,;.7;. An element be® ; .¥; will be written @ ; b,, where
b;e.Z;. We define a partial order relation as follows:

©,b, <O;c; b, <¢; Vi

It is then very easy to show that @ ; ., is a complete lattice
iff every .#; is a complete lattice. If ., are orthocomple-
mented we define an orthocomplementation on ® ;.7 as
follows:

@b) =®b!.

It is then again easy to check that @, .7; is weakly modular
iff every ., is weakly modular.

Suppose now that we have an arbitrary complete ortho-
complemented weakly modular lattice, then we can prove
the following.

Theorem 1.4; The center of a complete orthocomple-
mented weakly modular lattice is a complete Boolean lattice.

Proof: See Ref. 2, p. 29.

It is by means of this center that one can distinguish
between the classical case and the quantum case, and mixed
cases. If the center of the lattice is the whole lattice, then the
system is described by a classical theory. If the center of the
lattice contains only O and I, we have the pure nonclassical
case. Quantum mechanics without superselection rules can
only describe such a pure nonclassical case, because the cen-
ter of the lattice P (#") of all the projection operators of the
Hilbert space 5% does contain only O and I. Such a lattice is
called irreducible. To be able to write down the main
theorem that can be proved in quantum logic, we have to
give some more definitions.

Definition 1.5: An element p of a lattice is called an atom
iff whenever a is an element of the lattice such that 0 <a <p,
thena =0ora=p.

Definition 1.6: A lattice is said to be atomic if for every
element a there is at least one atom p < a.

The structure theorem that shows that every lattice of
properties is the direct union of irreducible lattices can only
be proved for atomic lattices that are weakly modular.

Theorem 1.7 (Piron): Every atomic complete ortho-
complemented weakly modular lattice is the direct union of
irreducible lattices.

Proof: See Ref. 2, p. 35.

We shall show that an analog decomposition exists for
lattices of properties that are not necessarily weakly modular
and atomic. Qur aim is, however, as we told in the introduc-
tion to make such a construction starting with the concept of
classical observable and not with the concept of compatibi-
lity which is not clear at all physically.
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I.. THE FORMALISM

We want to introduce classical mechanics in the follow-
ing way. We have a physical system. In general this physical
system can have classical observables and nonclassical ob-
servables. A theory that studies only the classical observa-
bles of the physical system in question will be classical the-
ory. A theory that wants to study the physical system in
more detail must often allow also nonclassical observables.
Quantum mechanics is a theory that allows the study of non-
classical observables. There are, however, two things that go
wrong with quantum mechanics. First of all, it allows only
nonclassical observables of a very specific nature, which is
due to the very specific mathematical structure of quantum
mechanics. As a consequence quantum mechanics cannot,
for example, describe separated systems (see Refs. 3 and 4).
Secondly, it does not allow the description of classical obser-
vables. Hence it can in a certain sense only describe the non-
classical part of the physical system. Due to these two short-
comings of quantum mechanics we certainly cannot
formulate our problem in a theory as quantum mechanics.
Quantum logic does not have the second shortcoming; it
allows the description of classical observables and nonclassi-
cal observables. However, again due to its specific math-
ematical structure it still can only describe nonclassical ob-
servables of a very specific nature. We want to be able to
formulate our problem in a theory without these shortcom-
ings. Moreover, in this theory it has to be possible to define
the concept of classical observable as we put forward in the
Introduction. Piron introduces the concept of “question” to
give a physical meaning to the concept of proposition (yes—
no observable) that is used in quantum logic.? He then intro-
duces the lattice of properties of a physical system from this
concept of question. He also defines a set of axioms on this
lattice, such that when these axioms are satisfied, the theory
becomes a theory equivalent with quantum mechanics, but
allows the description of superselection rules as explained in
Sec. I. Of course, his aim was to clarify quantum mechanics,
and therefore he was looking for a set of axioms that would
reduce the a priori more general theory to a theory as quan-
tum mechanics, with superselection rules. Two of the axi-
oms, namely the weak modularity and the covering law (axi-
om P and axiom A, in Ref. 2) do not allow the description of
separated physical systems (see Refs. 3 and 4). Also axiom C
of Ref. 2 has to be weakened in a certain sense if one wants to
avoid paradoxical situations for the description of separated
systems. Therefore, we will not retain the axioms of Piron
but only the structure of his theory without the additional
structure implied by the axioms. We will also not only use
this concept of question to justify the structure of the set of
properties, but we will use the concept of questions as a basic
work object in the theory. We shall shortly recall some defi-
nitions, but the theory as we will use it is explained in Refs. 3
and 4. In Refs. 3 and 4 another set of axioms is put forward,
enabling us to just drop the two wrong axioms, weak modu-
larity and the covering law. We want to mention that no
claim of truth is implied in the term axiom as it is used here.
The axioms must merely be seen as physical hypothesis.
First of all, we introduce the concept of entity to make clear
what we mean by a physical system. An entity corresponds
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to a phenomenon that we can experience without being
forced to experience also the rest of the world. It is an ideal-
ization in the sense that we decide to study a well-defined set
of properties of the phenomenon. It is possible to make state-
ments about the state of the phenomenon. Such a statement
only defines a property of the phenomenon if it is testable. A
proposal of such an experiment to test a statement is called a
question. Hence to define a question one has to define:

—the measuring apparatus used to perform the experi-
ment

—the manual of operation of the apparatus

—a rule that allows us to interpret the result in terms of
“yes” and “no”
A property of a phenomenon can be actual, the entity has the
property “in acto” or potential, the entity has the possibility
of obtaining the property.

A. Testing of properties and the concept of truth

A question a of an entity S is said to “true” (and the
corresponding property is said to be “actual”) iff when we
should decide to perform the test proposed by «, the expect-
ed answer “yes” would come out with certainty.

B. Inverse questions

If & is a question of the entity S, we can consider the
question that consists of proposing the same test as the one
proposed by a, but changing the role of yes and no. We will
denote this new question by «~, and call it the inverse ques-
tion.

C. Testing several properties at once

If we have a family of properties a; and questions a;
testing a;, a question that tests the actuality of all the proper-
ties a;, and which we will denote by 7, a;, and which we will
call the product of the ¢; is the following:

We choose as we want, at random or not one of the ¢,
and accord to 7;@; the answer obtained by performing the
test of this chosen question. Clearly, 7, «; is true iff ; is true
for every i.

D. A generating set of questions

We shall denote by Q the set of questions of the entity S.
We will consider Q to be closed for the “product” operation
and for the “inverse” operation. Hence, if a;€Q, then
7,a;€Q, and, if zeQ, then a~€Q. We can see very easily that
(ma;)” =ma;. A subset GCQ, such that if G we have
a~€G and such that

Q= {ma|a,eG|

is called a “generating set > of questions.

E. A physical law on the questions of an entity

If we have the situation that whenever a question « is
true, then also the question f3 is true, we shall denote this as

a<f

and we shall say “‘a is stronger than 8. This physical law has
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the following properties:

NHa<a,

2)ifa<Band B<y, thena<y,
where a, 3, and y are questions. Hence < is a preorder rela-
tion on Q.

F. Properties of an entity
If @ and 3 are questions of an entity S such that
a<fl and PFB<a

then we will say that « is equivalent to 8 and we will denote
a=p. If a=p, then @ and S test the same property of the
entity. This is why we shall identify the properties of the
entity with the classes of equivalence of questions. The col-
lection of properties of the entity we will denote by .#°. The
collection of questions that are never true we will denote by
O. For an arbitrary question @ we have a-a ~€0. It is easy to
see that Oe.?.

A trivial question is a question that is always true. If 7, is
a trivial question and 7, is a trivial question, then 7, = 7,.
Hence all the trivial questions define a property that we will
denote by . The preorder relation < on the set of questions
induces a relation on the set of properties, if a, be.¥

iff a<fB for

Itis easy tosee that < isa “partial order relation.” Hence .¥
is a “partially ordered set.”

If @; is a family of properties and «; €a;, let us then
denote the property tested by 7;; by A;a;.
It is easy to see that A;q, is an infimum of the family q;. Let
us define now for an arbitrary family g,

a<b aca and Seb.

Va, = A b.

aj<b v j bes
Then V,aq; is a supremum for the family g;. This shows that
Z is a “complete lattice.”

G. The set of states of an entity

The state of an entity is the set € of all actual properties.
We can remark that this state is totally determined by the
infimum of this set €. Indeed if

p=ANa

then € = {a|p <a, ac.?}. In the following we will represent
the state € of the entity by the property p. We will denote by 2
the set of all states.

We can see that a is actual iff the entity is in a state p
such the p <a. This shows that for every ae.Z” we have

a= Vp.

p<a

Therefore, we will say that X is a “full set of states” for .

H. An orthogonality relation

If p and ¢ are two states of S, we will say that p is orthog-
onal to g, iff there is a question ¥ such that ¥ is true if S is in
the state p and ¢~ is true if S is in the state g. We will then
denote plq. If p, g, r, s€%, then
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(1) plg=4qlp,

(2) plg and r < p and 5 < g, then rls,

(3)plg=pAg=0.

We shall say that two properties @, beL are orthogonal iff for
every p, g2 such that p <@ and g < b we have plg. We shall
also denote alb.

In Refs. 3 and 4 is shown in which way this formalism
can be found in classical mechanics and in quantum mechan-
ics. As we remarked already in the Introduction, in classical
mechanics every property of the entity corresponds with a
subset of the state space, namely the subset of all those states
that make the property actual. In quantum mechanics every
property corresponds to a projection operator, because these
are indeed the self-adjoint operators with two possible out-
comes, yes and no, or we can also say that every property
corresponds to a closed subspace of the Hilbert space, name-
ly the closed subspace of all the eigenstates of the projection
operator with eigenvalue 1.

I. Elements of reality and completeness of the theory

Let us recall the definition of an element of reality given
by Einstein, Podolsky, and Rosen (EPR}):

“If without in any way disturbing a system, we can pre-
dict with certainty the value of a physical quantity, then
there exists an element of reality corresponding to this phys-
ical quantity.”

If we know that the proposal of a test has an answer that
is certain, then we know that one of the questions @ or @~
corresponding to this test is true. So we see that the “zrue
questions” that we defined are just the elements in our theory
that correspond with the elements of reality of the entity.
Now our theory examines a set of questions of a pheno-
menon. This set of questions defines an entity. The condition
of completeness put forward by EPR is the following: “A
theory is complete if every element of reality has a counter-
part in the theory.” Certainly, EPR did not mean that a
theory should describe all the possible elements of reality of
the phenomenon. A theory never describes exactly the phen-
omenon, but always an entity corresponding to this pheno-
menon. Therefore, we shall say: “A theory is complete if it
can describe every possible element of reality of the pheno-
menon, without leading to contradictions.”

In Refs. 3 and 4 we show that this is not the case for
quantum mechanics. By construction this is the case for the
theory that we put forward. If we add elements of reality to
the entity, we just have to add the corresponding questions,
and we will never find contradictions since the structure of
the theory does not change by adding questions or taking
questions away.

I1l. THE CLASSICAL PART OF THE DESCRIPTIONOF AN
ENTITY

A. Classical questions and classical properties

After the analysis that we made about the difference
between classical mechanics and quantum mechanics, we
can very easily invent the definition of a “classical question.”

Definition 3.1: A classical question is a question for
which we can predict the answer for every state of the entity.
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It is very easy to see that a is a classical question iff a is
true or a~ is true for any state of the entity.
The two questions ¥ and § defined in the Introduction for the
piece of wood are both classical questions. The question 3-8
is not a classical question. Indeed it is very easy to put the
piece of wood in such a state that neither »-6 nor (y-6 )~ are
true: for example, if the piece of wood is wet and floats on
water. Then the answer that we get for the question -6 can
be “yes” or “no” depending on whether during the test cor-
responding to ¥-8 we choose to perform the question & or the
question y. Let us explain why this is the case. Suppose that
we denote by ¢ the property of the piece of wood tested by ¥
and by d the property of the piece of wood tested by §. Hence
¢ is the property *“‘the piece of wood burns well” and 4 is the
property “the piece of wood floats on water.”

Let us denote by ¢’ the property tested by ¥~ and by d '
the property tested by § ~. Hence ¢’ is the property *‘the piece
of wood does not burn well”” and d ' is the property “‘the piece
of wood does not float on water.”

The property tested by y-6 is c Ad “the piece of wood
burns well and floats on water” and the property tested by
(v8) =y-8 " isc’ Ad’ “the piece of wood does not burn
well and does not float on water.” For a piece of wet wood
that floats on water both properties c Ad and ¢’ Ad’ are po-
tential. This example shows that, first of all, there is no “logi-
cal” necessity for a question to be classical and, secondly, it is
very easy to find an example of a nonclassical question. We
can even show that every nontrivial product question is a
nonclassical question.

Theorem 3.2: If ; are questions of an entity S, then
m;@; is a classical question iff for every i, j we have a; ~¢;
and ¢; are classical questions.

Proof: Suppose that 7, a; is a classical question; then
ma; is true or (m ;)™ = ma; is true. Suppose that «a; is
true, then 7, ;" is not true. As a consequence, 7;q; is true.
Hencea; istrue ¥V 1. Clearly also ; are classical questions.l

Hence a classical question can only be a product ques-
tion of equivalent classical questions. We could have expect-
ed this result since from the definition of a classical question
immediately follows that a classical question is a primitive
question as defined in Ref. 4. Already a primitive question
can only be a product question of equivalent primitive ques-
tions as is shown in Theorem 4.2 of Ref. 4. However, every
primitive question is not necessarily a classical question. It is
this fact which for the first time appeared in quantum me-
chanics. Quantum mechanics treats primitive questions that
are not classical questions.

B. The classical property lattice

The problem that we want to consider is the following:
Which kind of theory do we find if we decide for a certain
phenomenon to consider only the classical questions of the
phenomenon and to study the set of properties generated by
these classical questions. Let us introduce the necessary
symbols to be able to treat this problem. Let us call K the set
of all classical questions of the entity S, and let us call C the
set of questions generated by K. Hence

C={ma;|a; is a classical question}.
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Definition 3.3: A property of the entity S that can be
tested by a product of classical questions will be called a
classical property.

Let us denote by % the set of all classical properties. We
shall call & the “classical property lattice” of S. We shall
show that the study of the classical properties of the entity S
can always be done by a theory as classical mechanics. First
of all, we remark that everything that can be shown for the
structure of an arbitrary property lattice is, of course, also
true for ¢'. Hence % is a complete lattice. We have to be
careful now. Indeed, if ac%, this means that there exists a
question 7; ; of S testing @, where a; are classical questions
of S. Now 7, @; determines uniquely an element of .¥”. Let us
denote this element by fla). Mathematically a and fla) are
different objects. Indeed a is an equivalence class of ques-
tions of ¢ while fla) is an equivalence class of questions of Q.
Hence we have that if zea then a<fla), but not necessarily the
inverse. Physically, of course, @ and fla) indicate the same
property of the phenomenon under consideration. Let us
study more in detail this classical property lattice of the enti-
ty S.

C. Classical mixtures and the classical state space

If € is the collection of all properties that are actual for
the entity S, as we explained in Sec. II G we represent the
state of S by means of the minimal element of €. We can
consider now 7, the collection of all classical properties that
are actual. Then f{77)Ce. This collection 7 we will call the
“classical mixture” of the entity S. Again as we did for the
state of S we shall represent this classical mixture of S by the
minimum of this collection 7. Sow = A, a.

Note that for every state p we find a unique classical
mixture w, such that p < f(w, ). But, if w is actual, the entity
can be in different states. This is the reason why we call w a
mixture. The collection of all classical mixtures of the entity
we will denote by {2, and we will call £2 the “‘classical state
space” of S. From Sec. 11 G follows that §2 is a full set for €
and from II H we have an orthogonality relation that is de-
fined on £2 and on ¥". Namely, two classical mixtures wand v
are orthogonal iff there exists a classical question ¥ such that
yistrueif Sisin the classical mixture w and ¥~ is true if Sisin
the classical mixture v. We shall denote wlv.

Theorem 3.4: Two different classical mixtures of S are
always orthogonal and the classical mixtures of S are atoms
of the classical property lattice C of S.

Proof: Suppose that w and v are two different classical
mixtures of S. There exist questions ; a; €w and 7;3,€v such
that @; and f3; are classical questions. Since w#v, we must
have w<w or v4w. Suppose w<v. Suppose that S is in the
classical mixture w. Then v is not actual. So there is at least
one j such that f3; is not true. But since 5, is a classical ques-
tion, it follows that 8 ;s true. If 8 is in the classical mixture
v, then 3 is true. This shows that wlv.

Let us consider now an arbitrary classical mixture w of
the entity S. Suppose & is a classical property of S such that
0<b<wand b #0. If b is actual, the entity is in a classical
mixture v < b. But then v < w. From this follows that
vAw = v. But then v cannot be orthogonal to w. Hence
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v = w. As a consequence, b = w, which shows that w is an
atom. n
This theorem shows that the orthogonality relation on
the classical states space becomes trivial as is indeed the case
in classical mechanics, where one does not use the notion of
orthogonal states. This theorem also shows that the classical
mixtures of the entity become atoms of the classical property
lattice €. As a consequence, we can say that points {w],
where wef2, really represent the classical mixtures of the
entity as one has in classical mechanics. To be able to see that
the part of the entity represented by the classical properties
can really be described by a theory as classical mechanics, we
shall introduce the state space description of an entity.

D. The state space description of an entity

If 2 is the set of states of the entity S, we can consider
the lattice P(2') of all subsets of 3. We can consider then the
map that makes correspond with every property a the set
pla) of all the states that make a actual. Hence

p:L—P)
a—{plp<apeX |.

It is easy to see that u has the following properties:

Theorem 3.5: If g, b, a,€.7, then:

(i) a <b iff ula)Cpulb)

(ii) ¢ is injective,

(i) ge( A a;) = nypla;),

(iv) 1(0) = ® and (1) = 3,

(v) alb=u(a)lu(b).

Proof: See Ref. 3, Theorem 3.1. ]

The reason why it is impossible to describe an entity by
just considering the set of states of the entity is because, first
of all, one loses the orthogonality relation, but, even when we
should think of a state space with an orthogonality relation,
it would in general not work. This is so because the points
{p} of P(Z) do not necessarily correspond to states of the
entity. Indeed, if peX and p is not an atom of ., then there
exists at least one ge3 such that g#p and g < p. But then
{g.p} Cu(p) such that u(p)# {p} and {p} does not corre-
spond to a state of the entity. In this case, of course, it makes
no sense to try to describe the entity by means of 3 alone
without considering .%.

Let us define 2 = { {v} |vef2 }, then £2 is a full set for
P(£2), and in the usual state space description of classical
mechanics it is £2 that represents the set of states. We shall
also define the trivial orthogonality relation in P (£2 ), which is
the following:

fr}l{wjeiv] #{w).

Then we can show that, for the classical state space of the
entity, problems of the kind mentioned above do not occur
such that we can describe the classical part of the entity by
using {2 and classical mechanics. Let us therefore consider
the map

pc:€—P(12),

a—{v|v<ape2 }.

Theorem 3.6: The map x is an isomorphism of {2 onto
0.

Proof: Since the classical mixtures are atoms of C we
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have that for every vef2, uc(v) = {v}. We also have

vl #we (o) # (w}e v} Lw)Sucbliuc). W
Often it is claimed that the lattice of properties of an entity
described by classical mechanics in a state space {2 must be
isomorphic to P (£2). The classical property lattice € is, in
general, however, not isomorphic to P (2 ), because the map
M need not be surjective. The reason that one claims that &
should be isomorphic to P ({2 ) is because once again does not
make a distinction between the ‘“‘statements” that can be
made about the state of an entity and the “properties” of an
entity. Of course, the set of all statements that can be made
about the state of an entity must be isomorphic to P ({2 ), be-
cause we can always put an arbitrary statement in the follow-
ing form: “Is the state v of the entity contained in the subset
A of £2”" and in this way make correspond to this statement
theelement A of P (£2 ). This defines an isomorphism between
the set of statements and P ({2).

A statement does, however, only define a property if it is
testable as we explained in II A. This is the reason why in
general the map u is not surjective. Let us try to see this
with an example. We consider again the phenomenon which
is a piece of wood and we suppose that we want to study only
the two questions y and 8.

Let use construct the property lattice of this entity. A
generating set of questions is the following:

G={r77r.66 |

where 7 is a trivial question. The set of properties corre-
sponding to this generating set is the following:

9 = {0, \dd'}.
We have
ydecNd, y -dec’'ANd, v ecAd’, y-6 e’'Nd’.

These are the only new properties defined by the product
questions. They are also the states of the piece of wood. As a
consequence,

< = {0l dd ', cNdc' Nd,eNd';c’ Ad'}
and

I ={cAdchd'cNdc Nd'}.
Since both questions y and & are classical questions, we have,
of course, ¥ = ., 2 =2. (See Fig. 1)

Let us consider now the map
then it is easy to see that g is not a surjective map. For exam-
ple, the element {c Ad,c Ad’,c’ Ad } is not an image of u.

ot
cAd ) A d!
(8]

FIG. 1.
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This element corresponds to the statement “The piece of
wood burns well or floats on water.”

There is a priori no question to test this statement. This
comes from the fact that the performance of the test ¥ and 6
corresponds to different experimental setups that cannot be
realized together. Indeed, it is possible in this case to intro-
duce an experiment that makes this statement testable. The
experiment is, for example, the following:

We take the piece of wood and break it into two pieces,
and we perform the test ¥ on one of the pieces and the test §
on the other piece. This experiment has four possible out-
comes | yes, yes}, { yes, no}, {no, yes}, and {no, no}. We can
define new questions by means of this experiment. We define
the questions:

y 4 § that consists of performing the experiment and
giving the answer yes if we have the outcome {yes, yes};
otherwise, we give the answer no.

¥ V & that consists of performing the experiment and
giving the answer yes if we have one of the outcomes {yes,
yes], | yes, no}, or {no, yes}. We give the answer no if we
have the outcome {no, noj.

¥ © 6 that consists of performing the experiment and
giving the answer yes if we have one of the outcomes |yes,
yes} or {no, no}. We give the answer no if we have one of the
outcomes {yes, no} or {no, yesj.

y4 8,y V 6, and y O 68 are classical questions. y 4 §is a
question that tests whether the piece of wood burns and
floats, ¥ V & is a question that tests whether the piece of wood
burns or floats, and ¢ © § is a question that tests whether the
piece of wood burns and floats or whether it does not burn
and does not float. Of course, we suppose here that the
breaking of the piece of wood into two pieces does not change
the properties ¢ and d of the piece of wood. So we suppose
that we can attribute properties to the original piece of wood
by making tests on pieces of this original piece. We feel very
well that this procedure will not hold for an arbitrary entity.

A set of generating questions is now the following:

G={r, 7, %ny,6 86 ,yv468 v46-,
y A48 vy 48,y VSé
Yy V8, yVE,y VE,vyO 8y 665}
The set of properties corresponding to G is the following:
% ={I,0,c,c'\dd’, cNd, cNd’, ¢'\d,
¢'Ad', eNVd, ¢cVd', ¢Vd, ¢Vd',
(cAd)V(c'Ad’), (cAd") V(' Nd)}.
We can see very easily that no new properties are defined by
the product questions. Hence .¥ = 4.
The set of states did not change by adding these new

questions, which shows that they are not so important for the
theory. So

S={cAdcNd' ' Nd,c Nd’)
We have

{eVd)AN(E'Vd')=(cNd')V(dNC),

[eVd')Ale'Vd)=[cAd)V{c ANd').

(see Fig. 2).

If we now consider the map u: . —P (2), we see that it is an
isomorphism. For example,
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FIG. 2.

wevdy={cAd, cAd’, ¢’ Ad}, which was the missing
statement.

We can now wonder what would be the weakest axiom
that we can formulate, such that we do have an isomorphism
between ¢ and P(£2).

Theorem 3.7: The

He:€—P(2)
a—{w|w < a,we }

is an isomorphism iff for every classical mixture w the state-
ment “the entity is in a classical mixture different from w” is
a classical property.

Proof: Suppose that - is an isomorphism. Consider
then the property @ = & '(£2 \zc(w)). Then we have: a is
actual <> the entity is in a classical mixture v < @, <> the
entity is in a classical mixture v such that g (v)C 2 \ucl(w),
<> the entity is in a classical mixture v# w.

Suppose now that for an arbitrary classical mixture w the
statement “‘the entity is in a classical mixture different from
w” is a classical property, and let us denote this classical
property by w’. To show that i is an isomorphism, we only
have to show the surjectivity of u.. Suppose AeP (£2 ). Con-
sider the classical property

a= Au'
Hc(w)C2 \NA).
Then
Hcla)= n - pclw)
polw) C (2 NA)
= N (@2 \pcw)
Hclw) T2 NA)
=N\(2\A)=A. [ ]

E. The classical part of the description of an entity and
classical entities

As we showed in the foregoing, we can study the classi-
cal part of an entity by means of the classical property lattice
which leads to a theory as classical mechanics. Let us now
see in which way this classical property lattice is a sublattice
of the property lattice of the entity.

Theorem 3.8: The map /2% —.% has the following
properties
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M0 =0, fl =1,

(ii) a < b iff fla) <fb ),

(iii) f(Asa) = ANif (@),

(iv) if p is a state such that p < f(a), then there exists a
classical mixture w < @ such that p < f(w),

(v)alb iff fla)Lf(b) for a,b,a,e?.

Proof: If wly, then clearly f(w)1f(v). Suppose now that
flw)Lf (v); then f(w) Af{v) = 0. Hence f(wAv)=0. Asa
consequence, w A v = 0. There exits a question 7; ; €w,
where a; are classical questions. If v is actual, then w is po-
tential. As a consequence, there is at least one i such that ;"
is true. Clearly, if w is actual, then @, is true. This proves that
wlv. If alb, then for w < a and v < b we have wly. Consider
now two states p and g of the entity such that p < f(a) and
g <f(b). Then there exists classical mixtures w, <a and
w, < b such that p < f(w,) and ¢ < f(w,). Then f(w,)Lf(w,)
and, as a consequence, plg. Hence f(a)Lf (b ). Suppose now
that f(a)Lf (b ). Consider w < aand v < b. Then f(w) < f{a) and
flv)<f(b). Hence f(w)Lf (v). From this follows that wlv. Asa
consequence, alb. a

If an entity S has only classical properties, we will say
that S is a “classical entity.” From Theorems 3.6 and 3.7
follows that such a classical entity can always be described
by a theory as classical mechanics.

IV. THE NONCLASSICAL PART OF THE DESCRIPTION
OF AN ENTITY

A. The nonclassical components of the property lattice
of an entity

Now that we have studied the classical properties of an
entity S, let us try to see what we can say about the nonclassi-
cal properties of S. For wef2 we can consider

7 = {alae.? and a <f(w)}.

Z . is the collection of all properties of S that are stronger
than the classical mixture w. Let us remark that none of the
properties of .Z", except 0 and w are classical properties.
Hence .¥, is a collection of nonclassical properties. If the
entity S is a classical entity, then, for each w, .%, is the
trivial lattice consisting of 0 and f(w). Let us now define

3 = {p|peZ and p <w}.

2, is the collection of all states of S that make the classical
mixture w an actual property.

Theorem 4.1: If ;€. , then A, q,€.¥, and
V,a,€.%, and X is a full set for .¥,. The orthogonality
relation on . defines an orthogonality relation on .% .

For an entity S that we describe by its classical property
lattice, .7, describes the hidden properties of S if S is in the
classical mixture w. Weshall call .7, the “nonclassical com-
ponent ™ corresponding to w.

We remarked already that, although @ and f(a) repre-
sent physically the same classical property, mathematically
they are different objects. To enlighten the notation we will
often for both objects ae€¢ and f(a)e.? use the notation a.
This will not lead to any confusion.

Theorem 4.2; Suppose that . is the property lattice of
the entity S and £2 is the classical state space of S and .7,
wef?, are the nonclassical components of S. If ae.%’, we have

2450 J. Math. Phys., Vol. 24, No. 10, October 1983

a= V{aAw).

wes

If a, be.?, we have
a<boaNw<bAw VY well,
albaANwlbAw VYV wef.

Ifg,€.%, we have

V(/i\ai/\w)z /i\(}v/(ai/\w)).

w

Proof: Suppose that a is actual. Then the entity is in a
state p < a. There is, however, also a classical mixture w such
thatp <w. Hencep <wAa. Butthenp < V ., (a Aw). This
shows thata < V ., (@ Aw). Since a A w < a for every w, we
alsohave V ., (@Aw)<a. Ifa<b, thenaAw<bAw. If
ahw<bAwforevery w, then V , [@aAw)< V  (bAw);
hence a < b. If alb, then a A wlb A w. Suppose now that
ahwlbAw V w. Take p <a and q < b, where p, ge3. Then
p<alAwandqg<bAvforw, vef2. If ws£v, then wlv and so
plg. If w = v, then a Awlb Av, and as a consequence plg.
This proves that alb. If a,€.%, we have

A ( Via; A w)) actual & V i, V(g Aw) actual

oV,
Hence foriwe have a w; such that a; A w; is actual. Takej##i;
then we have a w; such that ¢; A wj; is actual. Then
a; Aw; Aa; Aw; is actual. This shows that w;, = w;; other-
wise, w; Aw; = 0. Hence

3 wsuch that g; Aw is actual.

A ( Vi, A w)) actual

<3 w such that ¥V iag; Aw actual

<3 wsuch that Aag; Aw actual

= ( Na; A w) actual. ]

B. Decomposition of the property lattice in its
nonclassical components

Theorem 4.2 shows that we can replace every property
a of 8 by its component properties {a Aw}. This means in a
certain sense that if we know the classical property lattice of
the entity and all the nonclassical components of the entity,
then we know the property lattice of the entity. And this is
reflected by the fact that the property lattice is the direct
union of the nonclassical components. Hence the direct
union that we want to consider is

Q .7,

wel2
As we remarked in Sec. I, this direct union is a complete
lattice. It has a natural orthogonality relation

Qa, @b, iff a,lb, ¥V w,

and it has a natural set of ‘“‘states” which is a full set

I= [@ 0,9Qp,, where p e 1.

vFE W

Let us show that T isa full set for @ ,.% . The elements of 3
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areof theform® ,_,,0,@p,, wherep,€X,,. We will denote
such an element by p,, . We shall prove that foree® , .7, we

have
a=V P

p<a, peZ
If pe3, then p = p, for some v. Now p <@ ,a, iff p, <a,.
Suppose now that @ _a, <@ b,
&a, <b, Y w

&i{p, <b, for every p,<a,}] YV w

&{p, <@b, for every p, <@a,}] VY w.
This shows that

a=®a,= Vp, = Vp

v Pw . dy p<a

Theorem 4.3: Suppose that . is the property lattice of
an entity S and X is the state space of S and (2 is the classical
state space of S and ., w € £2 are the nonclassical compo-
nents of S. Let us define the following map:

u.L—-0.7,

a—-Q (a Aw);

then p satisfies the following properties:
(i) £(0) = O and pu(l) = 1,
(i) a < b iff ula) <pu(d),
(i) (A a,) = Apulas),
(iv) alb iff p(ajulp(b),
(v) £:Z—Z is an isomorphism.
Proof: If a < b, then

a<boahNw<bhw
SV @Aw) <@ (bAw)

Sula)<plb),
i(e)=0(1a )
= n(ganu)

= /i\:u(ai )-

If p is a state of S, there is only one classical mixture w s_uch
that p <w. From this follows that u(p) = p,, . Take p,,€3;
thenp, =@ ,.,0,@p,, wherep, €X,. But thenp,€X and
#pw)=p,. Ifp, g2, then

plgepAwlghw YV w

S Lulg). u

So the direct union @ ,.¥,, plays the same role for a general
entity as P ({2 ) plays for the classical part of the entity or for a
classical entity. Indeed, Theorem 4.3 reduces to Theorem

3.5 and Theorem 3.6 for a classical entity. Again, the map u
is not an isomorphism because @ , ., represents the set of
statements about the entity, and some of these statements are
perhaps not testable and in this case do not correspond with
properties of the entity. What is important, however, is that
we have an isomorphism between the state space 3 and 3.
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The statements that are contained in @ ,.¥,, and that
are not testable would in any case not lead to new states of
the entity if they would have been testable (or if we would
enlarge the entity by inventing questions to test these state-
ments).

C. Pure nonclassical entities

We introduced already the concept of a classical entity.
This is an entity of which every property is a classical proper-
ty. The other extreme situation is the one where the property
lattice of the entity has no classical properties except O and |
which are always classical properties. Such an entity we will
call a pure nonclassical entity. This classification agrees very
well with the structure Theorem 4.3. Indeed for the property
lattice of a classical entity all the nonclassical components
<, are trivial lattices {O,w}, and the @ .7, is isomorphic
to P(2).

For the property lattice of a pure nonclassical entity the
classical property lattice ¢ is a trivial lattice { O, |} and then
@ ,.7, = -Z. In general, an entity will have both classical
and nonclassical properties.

D. An entity described by quantum mechanics cannot
have classical properties except O and |

One of the great shortcomings of quantum mechanics
in one Hilbert space 5% is that while it is capable of describ-
ing nonclassical properties of an entity, it is uncapable of
describing classical properties of an entity.

Theorem 4.4: If an entity S is described by quantum
mechanics in a complex Hilbert space 7, then S has no
classical properties except O and |, and so the entity is neces-
sarily a pure nonclassical entity.

Proof: Consider an arbitrary property a of the entity in
question, tested by a question «. In quantum mechanics this
property is represented by the projection operator P, on the
closed subspace of the states that make a actual. The ques-
tion a~ defines a property bla and hence is represented by a
projection operator P, < 1 — P,. Consider two nonzero vec-
tors x, ye # such that P, (x) = x and P, (y) = y. Then clearly
x + y is no eigenvector of P, and no eigenvector of P,,.
Hence, if the entity is in the state represented by x + y, then
neither a nor ¢~ is true. This shows that « is not a classical
question. u

Ifitis clear that quantum mechanics properly used can-
not describe nontrivial classical questions, it is not amazing
at all that every time that one tries to describe a physical
system that manifestly has classical properties (e.g., the part
of the measuring apparatus that we use during a measure-
ment) with the formalism of quantum mechanics, one en-
counters the greatest difficulties. It is also clear then that
quantum mechanics is not a more general theory than classi-
cal mechanics. Both of them are special cases of a more gen-
eral theory, and this explains why it is so hard to draw them
together.

E. Example that shows that not every entity is a
classical or a pure nonclassical entity

If we consider an entity S that exists in space and time,
then we can in principle construct the following experiments
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for the entity. We put the entity between two oppositely
charged parallel plates. If the entity feels a force in the direc-
tion of the positively charged plate, we say that it has a nega-
tive charge. If it feels a force in the other direction, we shall
say that it has a positive charge. If it does not feel a force at
all, it is uncharged.

We define the question a that consists of performing the
experiment giving the answer “yes” if we find a negative
charge. Otherwise, we give the answer “no.” Experimental-
ly, one verifies that, for all the entities in nature for which it
makes sense to define the question «, the question « is a
classical question. Indeed for every entity its charge is nega-
tive or nonnegative. There does not exist a state of the entity
such that, in measuring the charge, the entity would some-
times have a negative charge and sometimes no negative
charge. This example shows that every entity as elementary
as one wants for which it makes sense to define the question
«a has at least one classical property.

V. THE CLASSICAL PART AND THE NONCLASSICAL
PART AND THE AXIOMS

The study of the classical part of the description of an
entity and of the nonclassical part of the description of the
entity is done till now without any axioms to be satisfied in
the formalism. In Refs. 3 and 4 we propose some axioms that
reduce the formalism in such a way that the nonclassical
components of the entity are irreducible complete ortho-
complemented weakly modular lattices that satisfy the cov-
ering law. By using Piron’s representation theorem (see Ref.
2), we have that energy nonclassical component ., be-
comes isomorphic to the lattice of closed subspaces P (#,)
of a generalized Hilbert space 5%°,,. For the property lattice
we find again the structure explained in Sec. I of a direct
union @ , P(#°,,) of Hilbert space lattices. As we remarked
already, only Axioms 1, 2, and 3 do not lead to contradic-
tions in the case of an entity consisting of two separated
entities. Axioms 4 and 5 are wrong axioms that make it im-
possible for the theory to describe separated entities (see
Refs. 3-5). Axiom 4 is the axiom that leads to the weak mo-
dularity of the nonclassical components. Hence, if we drop
this axiom we cannot proceed as explained in Sec. I to find
the direct union, nor can we apply Piron’s representation
theorem to find a Hilbert space representation for the non-
classical components. To define axiom 1 as proposed in Secs.
Il and IV, we introduced the concept of primitive questions.
Let us recall the definition of a primitive question.

Definition 5.1: If a is a question testing the property a
such that a™~ tests the property b, then a is a primitive ques-
tion iff whenever the entity is in a state orthogonal to a, then
a~ istrue, and, whenever the entity is in a state orthogonal to
b, then ¢ is true.

Let us recall Axioms 1 and 2.

Axiom I If S is an entity, then the primitive questions of
S form a generating set of questions for the property lattice.

Axiom 2: If S is an entity and p is a state of S, then the
statement “the entity S is in a state orthogonal to p” is a
property of S.

Axioms 1 and 2 have a consequence that the property lattice
-¢ becomes an orthocomplemented lattice. If ae.%, the in-
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terpretation of the orthocomplement is the following:
a' is actual iff the entity is in a state pla.

Let us remark that the classical property lattice % always
satisfies Axiom 1, since every classical question is evidently a
primitive question. It is now interesting to remark that if
Axioms 1 and 2 are satisfied for .%° and C, the map

luf—»@ fw

wes?
becomes an isomorphism.

Theorem 5.2: Suppose that we have an entity S with a
property lattice .’ that satisfies Axioms 1 and 2 and a classi-
cal property lattice % that satisfies Axiom 2; then for ae¢’
we have fla’} = fla)’ and fla)’ is actual iff f{a) is potential. We
will denote in the following f(a)’ by a'. For a,€% we have
fl®,a,) = V,fla;}and V fla;) is actual iff there is at least one
i such that f{a,) is actual. We will denote in the following
fi®;a;) by V,a;.

Proof: If ¢ satisfies Axiom 2, we have the following: If
we, there exists a question 7, «;, where ; are classical
questions such that 7, a; is true iff the entity is in a classical
mixture v different from w. So 7, @; is true iff the entity isin a
state g orthogonal to flw). This shows that 7, a;ef{w)’. Asa
consequence, flw') = flw). Ifee?, thena’' = A w’; hence

w<a

)= A fw)=( v fw) =far.

Ifa,e%, then

(va)=ona) = [ nteo] = va)

If Vfla;) is actual, then (V f{a;))’ is potential. So A, fla,} is
potential. But then there is at least one i such that f(a;})’ is
potential. For this follows that f{a,) is actual. |

Theorem 5.3: If .7 is the property lattice of an entity S
satisfying Axioms 1 and 2 and ¥ is the classical property
lattice of an entity satisfying Axiom 2 then the classical prop-
erties of S satisfy the following properties:

(i) If be.¥” and ae%, then

b=(bAa)V(bAa)

=(bVaAbVa).

(i) If b,€.¥” and ae¥, then

aAN(V.b)= V. (aNb,).

Proof: (1) We have clearly (b Aa)V (b Aa') < b. Suppose
now that b is actual. Since ae¥’, we know that ¢ is actual or @’

is actual. This shows that & A @ is actual or b A a’ is actual. In
both cases (b Aa)V (b Ad’)is actual. As a consequence,

b<(bAa)V(bAa).

Wehavealsob'={(b'Aa)V{b'Aa’). Hence b = (bV a’)
AV a).

(i) aA(Vib)=aA(V[(bNa)V;(b Na')])
=aA (Vb Aa)V,b,Aa").
Letusputb = V,(b; Aa)andc = V(b Aad’), thenb <aand

c<a'’:
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ah(Vb)=aA(bVc)
=aAbVeVa)AbVeVa)
=alA{cVa)AbVa)
=aAbVa)

=(bVa)A(bVa)=b= V(b Aa). ]

Theorem 5.2 shows that the orthocomplementation intro-
duced by Axioms 1 and 2 in . and the orthocomplementa-
tion introduced by Axiom 2 in & are the same. Theorem 5.3
shows that the classical properties satisfy compatibility rela-
tions. Every nonclassical component is also an orthocomple-
mented lattice.

Theorem 5.4: If . is the property lattice of an entity S
satisfying Axioms 1 and 2 and ¥ is the classical property
lattice of S satisfying Axiom 2. We define for ¢e.?’,

a’=a hw,

Then the map that makes correspond with every ae.?, the
property a* is an orthocomplementation of .¥,, and a¥ is
actual iff the entity is in a state orthogonal to a such that w is
actual.

Proof: If a, be.¥ and a < b, then b’ <a'. So
b'ANw<ad Nworb” <a”.Ifae.?,, then (a*)*

=@ Aw) Aw={aVw)ANw=aAw = a. Clearly,
a*Na=ad Awha=0. |

If .Z; is a family of complete lattices, we gave a con-
struction of the direct union @ ; .¥’; of the lattices .7’; in 1.3.
If ., are orthocomplemented lattices and we define for an
arbitrary element @ ;g; of the direct union

(0a) ~0a

then @ ., —»©, .7, is an orthocomplementation.

Theorem 5.5: Suppose that % is the property lattice of
an entity S and £2 is the classical state space of S, .7, for
we(2 are the nonclassical components, and % is the classical
property lattice. Suppose that .7 satisfies Axioms 1 and 2
and € satisfies Axiom 2; then

uL—-0 L,

a—Q (a Aw)

is an isomorphism.
Proof: Take be® ., then b =@ , b, where
b,e.? . Consider the property c = V b, of .Z. Then

chw, = (wa>/\w| = Vb, Aw)=b,, .
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This shows that

ple)=@lcAw]l =9@b, =b.

Hence 4 is a surjective map. From Theorem 4.3 it follows
that ¢ is an isomorphism. [ ]
This theorem shows that when Axioms 1 and 2 are sat-
isfied, the property lattice of an entity gets the very nice
structure of the direct union of its nonclassical components.

Vi. CONCLUSION

Theorems 4.3 and 5.5 show that we can indeed, for ev-
ery entity, study its classical properties apart by means of a
theory as classical mechanics. The changing of actual classi-
cal properties in potential and potential classical properties
in actual is described by the changing of the classical mixture
of the entity, which is in a certain sense the classical state of
the entity.

If we want to be able to describe also nonclassical prop-
erties of the entity, a theory as classical mechanics does not
work anymore for the description of these properties.

Quantum mechanics is a theory that describes nonclas-
sical properties. It cannot, however, describe classical prop-
erties. This shows that both classical mechanics and quan-
tum mechanics are special cases of the theory that can
describe an arbitrary entity having both classical and non-
classical properties and clarifies in a certain sense the very
old question: How many atoms do we have to put together to
have a macroscopical entity that has to be described by clas-
sical mechanics? Indeed, from our analysis it follows that the
degree of classicality of an entity is not defined by the num-
ber of atoms that it contains but by the nature of the proper-
ties that we take to characterize the entity.
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Extending previous works on the subject we consider the problem of the limitations to ideal
quantum measurements arising from the presence of additive conservation laws and we discuss
impossibility theorems and derive lower bounds for the deviations from the ideal schemes, with

particular reference to the distorting case.

PACS numbers: 03.65.Bz

I. INTRODUCTION

As is well known, the existence of additive quantities
which are conserved during the system-apparatus interac-
tion in a measurement process leads to limitations on the
possibility of an ideal quantum-mechanical measurement. '™
In this connection, two kinds of problems have been dis-
cussed. The first one concerns the proof of impossibility
theorems for some given measurement schemes.’ The sec-
ond deals with the modifications which have then to be in-
troduced in such schemes in order to make them compatible
with the existence of the additive conservation laws. In parti-
cular, it becomes important to evaluate how small the modi-
fications can be kept. This is usually obtained by deriving
lower bounds for proper combinations of the norms of the
unwanted states in the evolution equation.>™®

The ideal measurement schemes which are usually con-
sidered are value preserving in the sense that the state of the
system after the measurement belongs to the same linear
eigenmanifolds of the measured observable to which it be-
longed before the measurement. Within the framework of
the value-preserving schemes, when the eigenmanifolds of
the measured quantity are degenerate, one has further to
distinguish between nondistorting (or state preserving) and
distorting schemes.

As far as the impossibility proofs for such schemes are
concerned, in the literature,® there exists a very general
theorem for the state-preserving case and a less general
theorem for the distorting case.

Regarding the derivation of lower bounds for the terms
expressing the malfunctioning of the apparatus, there is a
quite general treatment® which, however, deals with this
problem only for the case of a state-preserving scheme. In
this paper, after a concise summary of the present situation,
we point out (Sec. II) that the impossibility theorem for dis-
torting measurements derived in Ref. 3 holds under less re-
strictive conditions. The main part of the paper (Sec. III) is

* Work supported in part by the Istituto Nazionale di Fisica Nucleare,
Sezionti di Trieste and Pavia.
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devoted to the derivation of lower bounds for the malfunc-
tioning terms in the case of a modification of a value-preserv-
ing distorting measurement process. The relevance of this
treatment resides in the fact that it is the first time that lower
bounds are derived for the distorting case, and in the fact
that, to get the result, we make use of less restrictive assump-
tions than those previously used in the derivation of bounds
for the state-preserving case. Some concluding remarks are
made in Sec. IV.

Il. INTRODUCTORY CONSIDERATIONS

In this paper, we will deal with the problem of the mea-
surement of an observable .# of a quantum system S (asso-
ciated with a self-adjoint operator M of the system Hilbert
space 57 5) in the presence of an additive conservation law.
Let us state, first of all, a general assumption which we shall
suppose to hold throughout the paper.

Assumption 1: Let the self-adjoint operator M have a
purely discrete spectrum and E; be the eigenspaces of M and
&, the associated projection operators. The system interacts
with an apparatus, the interaction being described by the
unitary evolution operator U acting in the direct product of
the system Hilbert space 57#°5 and of the apparatus Hilbert
space & ,.° An additive conservation law for the system-
apparatus interaction holds, i.e., there exist two self-adjoint
operators Ng and N, of %5 and 7 ,, respectively, such that

[ U’ei(Ns+ NA'r] — 0, v 7 (2.1)

As is well known, when the operators N and /or N, are
unbounded, Eq. (2.1) is the mathematically proper way of
expressing the conservation law for Ng + N,,.

Let us now define the various possible ideal measure-
ment schemes which can be considered in the general case in
which M has a degenerate spectrum.

A. Value-preserving nondistorting ideal measurement
scheme (VPND)

We say that the system-apparatus interaction corre-
sponds to a VPND measurement of .# if there exists a state
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#0,5° , such that for any ek,

U, = ¢8,, (2.2)
with (¢,, ¢;) = Ofor i ). The linearity of Uimplies that ¢, be
the same for all Y'cE,.

B. Value-preserving distorting ideal measurement
scheme (VPD)

We say that we have a VPD measurement process if
there exists a state ¢, ,, such that for any ¢YeE,,

Uyp'd.cE,; 8 F,, (2.3)

where F; are mutually orthogonal closed linear manifolds of
# 4, whose associated projection operators will be denoted
by # ;. The interest of the scheme (2.3) lies in the fact that it is
the most general scheme satisfying the physical requirement
that, when the measurement is immediately repeated, the
same result is obtained with certainty.

Relation (2.1) forbids, under proper assumptions about
the operator N, both the VPND and VPD schemes. This
situation raises two problems: the first is that of getting im-
possibility proofs for the ideal measurement schemes hold-
ing under the least restrictive assumptions on Ng. Once the
impossibility has been proved, it becomes natural to enlarge
the measurement scheme allowing the appearance of noni-
deal terms, and to investigate how small these unwanted
terms can be made.

Let us now make precise the modifications which have
to be considered. We distinguish again between VPND and
VPD schemes.

The basic feature of the VPND scheme is the fact that it
is not only value preserving, but also state preserving. To
distinguish among different states belonging to the same
manifold E;, we use a further label @. The VPND scheme is
expressed then by the evolution equation

Udinbo = tia i, (2.4)
with (@, ¢;) = 0 for i#/.

Let us denote by &, the projection operator on the
state ¥, and by /; the projection operator on the state ¢,. To

modify scheme (2.4), we consider the completely general
evolution

U, ¢0 = giaﬁ U‘/’ia éo
& ally — L) Ui dg

+ (s — &) Ui do- (2-5)
As discussed in Ref. 7, the second term on the rhs of (2.5)
represents errors and/or ambiguities in the result of the mea-
surement, while the third term represents the distortion of
the state of the system (also associated with possible errors
and/or ambiguities). Obviously, in order to have a good ap-
paratus in the VPND spirit, one wants to make as small as
possible the norms of such terms.

In the case of the VPD scheme, the evolution equation
{2.3) can be rewritten as

Uppy =&, F Ud,, ¥ ¢YeE,. (2.6)
We recall that ; and .#, are the projection operators on E ;
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and F,, respectively.
To modify this scheme we write, in place of (2.6), the
completely general evolution equation

U'ﬁm‘ﬁo = gi‘?i Ull’m‘ﬁo

+ & (1, — F ) Uy + (Is — &)U,
2.7)

Again the second term on the rhs represents errors and/or
ambiguities while the third term represents the (value-non-
preserving) distortion of the state of the system. To have a
good VPD apparatus, we have to assume that all the states at
the rhs of (2.7), except the first one, have small norms.

Let us now discuss the situation concerning the impos-
sibility proofs and the derivation of bounds for the unwanted
terms.

C. Impossibility proofs

As far as the VPND scheme is concerned, Stein and
Shimony? have proved that the assumptions listed under As-
sumption 1 are incompatible with (2.2) unless

e"Ye®,, ¥ reR, YV yeE,. (2.8)

When N is unbounded, this is the proper mathematical
way to express the fact that Ng and M “commute.”

For the VPD scheme, one can prove that Assumption 1,
plus a further requirement, Assumption 2, that we give be-
low, are incompatible with Eq. (2.3), unless, again, Eq. (2.4)
holds. Assumption 2 concerns the operator N and is formu-
lated as follows.

Assumption 2: All the closed linear manifolds E; are
contained in the domain & y_of the self-adjoint operator
Ny.

Note (see the Appendix, Theorem 2) that this implies
that Ny is bounded on each E,, in the sense that

INs¥ NI<Bi (9], ¥V ek, (2.9)
Obviously, this does not mean that N, is a bounded operator
on 7.

To prove that under Assumptions 1 and 2, the evolution
Equation (2.3) [or equivalently (2.6}] cannot hold unless, for
any i,

Nsy'%eE;, ¥ yYeE,
we proceed as follows.

Let us consider the matrix element (¢,

'™t Myog), with Uk, [ = [ldoll = 1, (1 = iy i #)).
Due to Eq. (2.1), we have
(¥7.e™ ) g0 o)

= (U, ™ " Uy,

=(&,F Ui, E F U'y). (2.11)

For r#0, let us define the operator g(r) of #° through
the relation

(2.10)

iNgr
e

= Is + irg(r), (2.12)
and observe that g(r) is everywhere defined in 75 and
bounded. Due to the fact that (§*, ) =0 and &,%, =0,
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we get, from (2.11),

(8NN Bore” " bo)

= (U0, & 8(NE .7 ;€™ F Uf's). (2.13)
There follows, using the Schwarz inequality,
(8.8(r1")] |(Gore”™ B0l

<” gjg(r)giyjem’"?i U’/’(i)‘ﬁo"' {2.14)

According to Eq. (A6) of the Appendix, the operator g(r)&,
is bounded; moreover, its bound ||g(r)& ;|| is, for any r+0,
smaller than the bound B, [defined in Eq. (2.9)] of the restric-
tion of Ny to the closed linear manifold E;. Therefore we
have

|(¥.8(r1%0°)] |(Bore”™ o)
<B|\F ™ F Uy,

Since

(2.15)

N
iN
e —l,
r—0

and

N
8Ny ——Nsy",
r—0

recalling that ;% ; = 0 and taking the limit of {2.15) for
r—{), we get

(Y. Nsy") = 0. (2.16)

Since (2.16) holds for any / and j, Eq. (2.10) follows for any .

This theorem constitutes a slight generalization of pre-
vious impossibility theorems given in Refs. 2 and 3; its proof
follows essentially the same lines used in those papers. The
theorem is slightly more general since it makes use of As-
sumption 2 in place of the more restrictive assumption used
previously.

A version of this theorem which is weaker both in the
assumptions and in the results can also be given and turns
out to be useful (see Sec. IV). Precisely, let us replace As-
sumption 2 by a similar Assumption 2i concerning only the
manifold E,. By inspecting the proof of the previous
theorem, one sees that the conclusions remain valid, the only
difference being that now Eq. (2.10) follows for only that i to
which Assumption 2i refers. In this form, the theorem can
easily be extended also to the case in which a part of the
spectrum of the measured quantity M is continuous. In such
a case, we assume that the time evolution is of the VPD type
(2.6) for any i in the discrete spectrum of M and that

U'pcF ' UPd,, YV YeE’, (2.17)
where E ' is the closed linear manifold in %5 corresponding
to the continuous part of the spectrum of M, and ¥ ' is the

projection operator on a closed linear manifold ' in 7,
orthogonal to all manifolds F,. The property (2.17) means ]

that the apparatus can recognize the states of the continuum.
Then, under Assumption 1 {where a purely discrete spec-
trum is replaced by a partly discrete spectrum), Eq. {2.10)
follows for any / in the discrete spectrum for which Assump-
tion 2i is verified.

D. Bounds

When an ideal measurement is forbidden, one is com-
pelled to resort to modified schemes which allow a certain
amount of nonideality.

As far as the derivation of bounds for the norms of the
terms representing malfunctioning is concerned, up to now
the most general result which has been obtained refers only
to the case of no degeneracy or to the scheme (2.5} and makes
use of the assumptions that Vg is bounded and ¢, belongs to
the domain of N,. In fact, in Ref. 8 we have derived a family
of inequalities relating the norms of the distorting terms to
the inverse of the mean value of the square of ¥, on the state
éo- We now consider a generalization of the previous results
yielding a lower bound for the norms of the unwanted terms
of (2.5) and (2.7) under less restrictive assumptions about N.

tlii. LOWER BOUNDS FOR DISTORTING
MEASUREMENTS

We now want to obtain lower bounds for the two last
unwanted terms on the rhs of Eq. (2.7).

We again suppose that Assumptions 1 and 2 hold and,
moreover, the following.

Assumption 3: The initial state ¢, of the apparatus be-
longs to the domain of the operator N ,.

Let us denote by p, and 7, the norms of the unwanted
terms,

pr =€ (1, — F ) U,

1 = |(ls — & )09, (3.1)
and by Q, the projection operator on the manifold ortho-
gonal to £,

0 =1;—-%, (3.2)
Then we can write the identity

ei(NS + Nr — Qjei(Ns + Ngr

+ ei(NS-#NA)re—iNSrgjeiNsr. (33)
Using Eq. (2.1), we have

{(Ns+ N, {(Ng+ Njr
e‘( s+ Nar U+Qerl( s P

4+ NN e Ny U (3.4)
Recalling definition (2.12), we put in an analogous way,
eM =1, +irG(r). (3.5)

Then, sandwiching Eq. (3.4) between the normalized states ¥, and ¥"%¢,, i #/, we get

(¥".8ir1y") + iy g(r1Pdo,G (r)o)

= (Ug™* (N0, &, Up"do) + (UG * (N80, & ; Upo) — (Us0g* (&, UY o)
+ &+ (NG, U0, U8,) + (Q, Uy o, Ug(rith o) + (Q; U, UG (o) + rI(r), (3-6)
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where we have denoted by rI” (r) all the other terms arising from the rhs of (3.4). From the explicit expression for I (r), we have
immediately
T (n|<|(Ug* ()G * (4o, & , Uyl

+ |(Ug* (o8 * (N, Ug"Bo)| + |(Ug™ (80, & 8(r) U 'o)]

+ (UG * (11808 (€, U0)| + (UG *(r)0, & ;8(r) U o)

+ (%8N U 60, % 8N U )| + [(Q; U85, Ug(r)G (r}i"d,)]

+ |rl{1{Ug™ (NG * (i dog ™ (NE, Us"do)| + |(Ug™ (NG ™ (r)ee, & (1 U go)|

+ [(Ug* (Ne780,(8* (NG N &N U"$o)| + (UG * (1,8 (& NE ;8(r) U )|}

+ P(Ug* ()G * (08" (N )& 8(r) Ut (3.7)
Using Theorm 3 and the last remarks made in the Appendix, we have that the inequalities
le* (&, wI<B ¥, ||%,8n¥|I<B;|¥| (3.8)

hold for any ¥e ¥’ ® #°, and any r#0. We then get, from (3.7), using the Schwarz inequality,
IT ()| <llg* (NG * (|| + 2B; llg* (r¥]| + 2B,[|IG *(ridoll + B + llglri¥”|l |G (il
+r{2B||g* (|| IIG * (ndoll + B}llg ™ (19Nl + BIIIG " (nidoll} + r*Bllg™ (r#Pll IIG ™ (ridol- (3.9)
We now observe that under our assumptions, all the norms appearing on the rhs of (3.9) have finite limits for 0. Since B; is
independent of 7, it follows that
lim " (r)=0. (3.10)
r—0
We can then take the limit for —0 of Eq. (3.6), getting
(W’»NS ¢(’7) = (UNS ¢(ﬂ¢0’ g}' U‘ﬁw¢0) )
+ (UN, 90, &, Udo) — (Upo,Ns &, Uy o) + (Ns & UyV'bo, Ut ho)
+(Q; U, UN 80) + (Q; U0, UN ,9'). (3.11)
From this equation, using the Schwarz inequality, we have
(W Ns ) <2B || & U ¢g|| + B.NIQ, Uy |

+ N Boll (12, U680l + 10, Ut oll} + (Vs B, U, Ut s). (3.12)

We note that

€, UP8o|<|I(L; — &) Uoll = 1:,  1|Q; Uydo|| = [[(Is — &)Uy, || = ;. (3.13)
Furthermore, we have
(N5 &, U, U,

E|(Ns gj‘?j U'/’m‘ﬁo’U‘/’m‘ﬁo) + (N5 gj(IA - ‘?-j)me¢01U¢m¢0)|

<|(Ns ;7 , U0, Uy ,)| + INs B (I — F JUd 8|, (3.14)
and

[Ns& (L, — F N UPo||<B, || & (1, — F YU, =Bp;, (3.15)
and
[(Ns &, F U0, U,)|<|(Ns & ;.5 ; Uy, & . F , Ui, )|

+ (N5 8,7, Uf¢0, & (L, — F JUP)| + |(Ns & ;.5 ;U1 — &)U o)|. (3.16)

The first term on the rhs of (3.16) vanishes since # %, = 0; again using the Schwarz inequality , the bound (2.9) and
Definitions (3.1), we get, from (3.16),

[(Ns &, F U0, U ,)| <B,lp: + 1.). (3.17)
From (3.12), using (3.13)—3.15) and (3.17), we finally have
WAN <IN Boll(m: + ;) + B,(39; +p; +p.) + By, (3.18)

Equation (3.18), obtained using Assumptions 1 and 2 together with the additional hypothesis, Assumption 3, implies the thesis
of the theorem of Sec. I, since it shows that the 77 and p terms cannot vanish, unless Eq. (2.10) holds.

We can now use inequality (3.18) to see how well one can approximate a VPD measurement scheme when an additive
conservation law holds and N couples different eigenmanifolds of the measured quantity. We assume that the hypotheses,
Assumptions 2 and 3, are satisfied. The quantities B, must be considered as given. The only quantity which can be monitored
to reduce the malfunctioning of the apparatus is, as is well known,*® the expectation value (¢o, NV % #o)=||NV ,@o||> of N? on the
initial state @,. Let us then assume that we can make very small the quantities 7, and p, by making ||N,,é,| very large.
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In the limit of very small 7, and p,, Eq. (3.18) yields

7 +77j>I(l//”’,Ns%ﬁ‘”f/HNA%H- (3.19)
This relation gives the lower bound for the value-nonpre-
serving terms in the case of a value-preserving distorting me-
surement process. It holds under Assumptions 1 and 3 and
the condition, Assumption 2, on Ng.

Obviously, the previous derivation of the bounds for
VPD measurements also yields bounds for the VPND
scheme. In such a case Assumption 2 can be further relaxed.
In fact, let us consider a pair of system states ¢,,€E;n< y_
and ¥z€EnY _. Then Assumption 2 is trivially satisfied
for the one-dimensional linear manifolds £, and E;;
spanned by ¥, and ¢, respectively. The evolution equation
for the state ¥,, 4, then takes the form (2.5). Due to the same
formal structure of Eqs. (2.5) and (2.7), the derivation given
above can then be repeated step by step leading to the result

Nia +njﬁ>'(¢j !Nswia)l/llNA¢O|” (3.20)
with obvious definitions of 7,,, 77,5. Equation (3.20) holds
under the only Assumptions 1 and 3 for any pair of system
states belonging to different eigenmanifolds of the measured
observable .# and falling within the domain of Ng.

Before concluding this section, we point out that the
results quoted or derived in this and in the previous section
can also be relevant for the measurement of an observable .#
whose associated self-adjoint operator M does not have a
purely discrete spectrum.” In such a case, we write
M = (A d& (1), where & (A )is thespectral family of M. Then
each operator (4 ) is associated with the observable corre-
sponding to the yes—no experiment testing whether the value
of M is smaller or larger than A. One says that M can be
measured according to an ideal scheme of the VPND or
VPD type if all the observables associated with the operators
& (A )for all A ’s can be measured according to the considered
scheme. This definition seems appropriate since it implies
that the state of a system belonging to the linear manifold on
which P, , = &(4,) — &(4,) projects is not altered (in the
VPND scheme), or at least not brought out of this manifold,
in a measurement aiming to ascertain whether 4, <4 <1, or
not. These measurements are the physically significant ones
for an observable possessing a continuous spectrum. Since
the operators & (4 ) have a purely discrete spectrum, one can
apply the theorems of Sec. II, provided the corresponding
assumptions are satisfied for any A. In particular, if one con-
siders a VPND scheme, the Stein—Shimony theorem of Sec.
II implies that

eVYeER), YV yeER), (3.21)

whereE (A )is the closed linear manifold corresponding to the
eigenvalue 1 of &(4 ). Analogously, in the case of a VPD
measurement, the theorm of Sec. II and the bounds of Sec.
III hold, provided Assumption 2 istrueforall E (4 ). Wenote,
however, that in this case, Assumption 2 amounts to the
requirement that N be a bounded operator.
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IV. CONCLUSIONS

In this section, we give examples of applications of the
theorems of Sec. IT about the possibility of ideal measure-
ments of physically significant quantities. All examples, ex-
cept the last one, were already discussed in Ref. 3. Once
again, we have to distinguish the case in which we require
that the state of the measured system is not affected by the
apparatus (VPND scheme) from that in which we only re-
quire that the value of the measured observable is preserved
(VPD scheme).

For the case of a VPND scheme, the Stein and Shimony
theorem® shows that Assumption 1 is incompatible with the
scheme (2.2) unless Eq. (2.8) [or (3.21)] holds. As was already
stressed, the proof of this theorem does not require any as-
sumption on N except its being self-adjoint. Equations (2.8)
or (3.21) imply, as is well known,

[¢",eM ] =0, V rreR. (4.1)
Assuming that the system-apparatus interaction is always
translationally and rotationally invariant, the total linear
momentum P = ps + p, and the total angular momentum
J = J + J, are additive conserved quantities. Then we get
from (4.1) that one can measure, according to a VPND
scheme, only the observables of the system satisfying the
relations

eip\-reiM.»e — ipgr — eiM.)’

(4.2)

These equations imply that no quantity of the system which
is not translationally and rotationally invariant can be mea-
sured according to a VPND scheme, and, in particular, for-
bid VPND measurements of components of position and an-
gular momentum.

For a VPD measurement, the situation is much less
restrictive. However, when the Hilbert space #°; is finite
dimensional, the impossibility theorems always apply. In
particular, this means that a value-preserving measurement
of a spin component is always forbidden. For angular mo-
mentum, we point out® that the impossibility theorems for-
bid a value-preserving simultaneous measurement of the
commuting observables L > and L,.

We finally consider a VPD measurement of the internal
energy of a quantum system, for example, a system of two
particles whose Hamiltonian is

H=P/2M +p°/2u + V), (4.3)

where P and p are the center of mass and relative momenta,
respectively, and 7 is the relative coordinate of the two parti-
cles. Let us assume that the (discrete) eigenvalues of the ob-
servable to be measured,

A=p*/2u+ V), (4.4)

are only finitely degenerate. Since the system-apparatus in-
teraction is translationally invariant, the total linear mo-
mentum
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P=P+p+p, (4.5)

(where we have denoted by p, the linear momentum of the
apparatus) is conserved. The eigenstates of 4 are bound
states so that they belong to the domain & », of acomponent,
say, p., of p. Due to the assumed finite degeneracy, it follows
that any eigenmanifold E; of £ is also contained in &, . We
can then apply the theorem of Sec. II in the weaker form
illustrated in the final part of the section, identifying p, with
N;. It follows that a VPD measurement is possible only if E;
is an invariant manifold of p, . This is impossible, since E, is
finite dimensional. .

From the preceding considerations, one is led to the
conclusion that in quantum mechanics, due to the additive
conservation laws of the linear and angular momenta, in
many cases and for several physically interesting observa-
bles, it is not possible to perform an ideal value-preserving
measurement. Obviously, due to the relations we have de-
rived expressing lower bounds for the terms representing a
malfunctioning of the apparatus, one sees that from a practi-
cal point of view, the unwanted distortions arising in the
measurement turn out to be very small due to the macro-
scopic character of the apparatus (which allows us to make
the expectation value of N % very large). Regarding the prac-
tical measurement of an observable, it is then possible to
have apparatuses working almost ideally. However, we
stress that the impossibility proofs for ideal measurements
can have also a conceptual relevance. For instance, argu-
ments of this type have been used to reject some suggestions
of instantaneous transfer of information using the reduction
of the wave packet.'®

APPENDIX

We briefly summarize, in this Appendix, some very
well-known general theorems and properties of operators in
Hilbert space which are used in the derivation of the results
of the paper.

We shall always deal with a self-adjoint operator 4 de-
fined on a domain & , of a separable Hilbert space 7.

Given such an operator 4, we denote by E (s) the spectral
family associated with 4, and we define the operator func-
tion g(r) of 4 according to

glr) = (e — 1)/ir, reR. (A1)

We note that, for any given r+£0, g{r) is everywhere defined
and bounded.

We recall some very well-known properties of g{r); for a
proof of the quoted theorems, the reader is referred to any
good book of functional analysis, e.g., to Ref. 11.

Theorem 1: 4 is a self-adjoint operator on a Hilbert
space &,  a vector of its domain & ,, and g{r) the operator
defined by (A1). Then the state g(r)y coverges strongly for
r—0 to the state Ay:

S—dy, ¥ e, (A2)

From the above theorem, it follows trivially that if 7 is
a projection operator onto a closed linear manifold EC & s
we have
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gnNz —;»A-”/’, (A3)

the convergence being in the strong operator topology.

Theorem 2: 4 is self-adjoint and E a closed linear mani-
fold contained in & ,. The restriction4 | Eof 4 to Eisa
bounded operator on E.

The proof makes use of the fact that the self-adjointness
of A implies its closure, and this in turn implies that 4 | Eis
closed as an operator on E. Since EC Y ,, A | E is defined
everywhere on E; this, together with its being closed, implies
that 4 | Eis bounded. Note that the above means that there
exists a constant B such that

|4¥l<Bllgl, V ¢k (A4)
Theorem 3: A is self-adjoint, EC & , a closed linear
manifold, Z the projection operator onto E. Then

[4ZY||<Blll, Vv ye¥ (AS)

and
lgtnZ||<B, Y r#0, (A6)

where B is the bound of 4 | E.
Equation (AS5) is a trivial consequence of Theorem 2.
Equation (A6) is proved as follows:

g2 = |
<[#a|E G2 =47 v <B? W17,

where we have used the fact that |(¢™ — 1)/7|><s?, ¥ r#0.
Since the adjoint of a bounded operator is bounded with the
same bound, we have also

|Zg*(r)|<B, ¥ r#0. (A7)

From the definition, it follows that g*(r} =g{ — r), so
that all the above propositions remain valid by interchanging
g(r) and g™ (r).

Finally we recall that when an operator 4 on 5 is con-
sidered as an operator on the direct product #° ® & of ¥
with another separable Hilbert space #, then: (i) 4 bounded
on 7 with bound B implies 4 ® I, bounded on #° ® # with
the same bound. (ii) Let 4 () be a bounded family of opera-
tors,

2

irs__l
¢ d |\E )7y

S
|4 (r)| <C, ¥ 40 and let 4 (F——A, then
r—0

S
A(nel,—Adsl,.
r—0

The proofis straightforward. For our purposes, we shall use
statement (i) to assert that the operator g* () and Zg(r)
are bounded operators with the bound Bof 4 | E, even when
they are considered as acting on % ® %. Analogously, state-
ment (ii) implies that

S
g NZ el,—AZ ol
r—0
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The u(3)-boson Lie algebra is the liquid limit of the symplectic algebra sp(3, R ). An analytic
formula is given for the u(3)-boson matrix elements in irreducible unitary representations
corresponding to the sp(3, R ) discrete series. The formula also applies to the generators of the
mathematically isomorphic, but physically different, interacting boson algebra.
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I. INTRODUCTION

In this paper, an analytic formula is reported for the
generators of the u(3)-boson Lie algebra for those irreducible
unitary representations needed in the theory of nuclear col-
lective motion."? This Lie algebra is the liquid (i.e., many-
nucleon) limit of the symplectic Lie algebra sp(3, R ).*” In-
deed, the ultimate physical justification for the u(3)-boson
model depends upon its relationship with the microscopical-
ly exact symplectic collective model.

Sincetheaction of sp(3, R ) on many-fermion state space
decomposes solely into discrete series representations, this
series exhausts the physically allowed symplectic collective
models. Hence the relevant irreducible representations of
the u(3}-boson algebra correspond to sp(3, R } discrete series
representations.

The plan of this paper is to first define the u{3}-boson Lie
algebra and then define a basis for the discrete series which is
symmetry adapted to u(3). The results for the u(3) reduced
matrix elements are given in Egs. (8) and (9).

Il. DEFINITION OF THE u(3)-BOSON ALGEBRA

The u(3)-boson Lie algebra is a 22-dimensional semidir-
ect sum consisting of the unitary algebra u(3} plus a 13-di-
mensional boson (Heisenberg) algebra as the ideal.'?

The unitary subalgebra is just the symmetry algebra of
the harmonic oscillator H,,. The remaining eight generators,
spanning the special unitary algebra su(3), forma (Au) = (11)
irreducible tensor operator (via the adjoint representation)
which is denoted by C''".

Since the boson algebra is an ideal, its generators are
given conveniently as u{3) irreducible tensor operators too.
With respect to su(3}, the boson algebra is spanned by (1) a
(An) = (20) tensor 4 %, (2) a (Au) = (02) tensor B %, the ad-
joint of 4 *®, and (3) the identity I, spanning the center of the
entire u(3)-boson algebra. Note that both 4 ?® and B °? are
six-dimensional tensors. Furthermore, their commutators
with the harmonic oscillator are

[H A (20}] 24 (20) [Ho’ B (02)] = — 28 02) (1)
Thus 4 “?increases the oscillator eigenvalue in any represen-
tation by two units, whereas B °? decreases the eigenvalue by
two units.

By coupling the commutator of two tensors to good
total symmetry, the commutation relations may be ex-
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pressed in tensor form. The tensor commutator of 4 % with
itself and B ©? with itself always vanishes:

[A (2())’ A (20)](21) — 0’ [B (02)’ B (02)](12) =0. (2)

However, the commutator of B °? with 4 ?? is a multiple of
the identity

Nol, (A1) = (00),
B (02) (20) {Age) f 3
B4 [o, g =(or 22, 7

where N, is a real constant. This completes the definition of
the u(3)-boson algebra.

It is interesting to compare the u(3)-boson algebra with
the sp(3, R ) algebra.> The symplectic algebra is a 21-dimen-
sional simple Lie algebra containing u(3) as its maximal com-
pact subalgebra (spanned by H, and C'"). In addition,
sp(3, R ) contains a (20) tensor 4 ?” and a (02) tensor B *?;
there is no identity operator. Its commutation relations dif-
fer from the u(3)-boson algebra only in the commutator of
B “? with 4 ®®, which in sp(3, R ) lies in u(3):

ViHo  (du) = (00),
JICH, {Ap) = (11), (4)
0, (Au) = (22).

[B 02, 4 20y0u —

lil. BASIS STATES FOR DISCRETE SERIES
REPRESENTATIONS

An orthonormal basis for vectors symmetry adapted to
u(3) will be defined now for each discrete series irreducible
representation of sp(3, R ).**° The corresponding u(3)-boson
representations are spanned by the same orthonormal basis.

The spectrum of the harmonic oscillator in a discrete
series representation is N, + n, where N, is the smallest ei-
genvalue and 7 is an even nonnegative integer,
n=20,2, 4, ...The eigenspace belonging to N, contains a
single u(3) irreducible representation Ny A, t,), where
(Ao o) s its su(3) content. This “starting” representation
Ny Ag to) of u(3) completely determines and, hence, labels a
discrete series representation.

A spanning set of vectors for the oscillator eigenspace
belonging to N, + n is created by applying n/2 times the
raising tensor 4 ?” to the starting u(3)irreducible representa-
tion space. In order to form states with good u(3) symmetry,
it is necessary to first construct all possible tensor couplings
of n/2 products of 4 ®°. Since the 4 *® commute with each
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other, only totally symmetric couplings are nonzero. These
u(3) symmetric couplings are enumerated by the set'°

2 = {(nnon,)|n>ny>n,>0and ny, ny, nyevenintegers}, (5)

where n = n, + n, + n,, and the su(3) content of the sym-
metric tensor is (n, — n,, H, — n,).

A u(3) symmetry-adapted basis for the discrete series
representation Ny A, 1) is given by the tensor products of
totally symmetric tensors with the starting u(3) representa-
tion. The resulting orthonormal basis is denoted by

|(nnan300( A pla), (6)

where (n,n,n;) ranges over the set {2, p denotes the multiplic-
ity of ( A u) in the su(3) tensor product

(ny — ny, ny — n3) ® (A 1), and a indexes a basis for ( Ay).
The above vector is an eigenvector of the harmonic oscillator
belonging to the eigenvalue Ny + n = Ny +n, + n, + n;.
Note that there is an additional possible multiplicity for

( Au), since two different symmetric tensors (n,7n,n,) and
(nynyni)withn =n, +n, +ny =nj + n, + n} may pro-
duce the same { Au) with nonzero multiplicities p and p'.

J

N

[ Nolny +4)(n; —ny + 2)(n, — n3 + 3)

IV. MATRIX ELEMENTS OF u(3)-BOSON GENERATORS

Since 4 *” and B °? areirreducible u(3) tensor operators
and our basis is symmetry adapted to u(3), the Wigner-Eck-
art theorem is applicable and, hence, it suffices to ascertain
the reduced matrix elements of the u(3)-boson generators.
Moreover, since B ?is the adjoint of 4 2, its reduced matrix
elements are given by

((rnonalo( Ap)[|B “ll(ni n3ns Jo'( A p')
= (= [ edim( A )/ dim( Ap)' 2

X{(ninsn3)p'( A 1)l 4 20N (mnons)o Ap))*, (7)
where dim( Ay) = (A + 1)(u + 1) A + u + 2)/2 is the di-
mension of the su(3) representation { Au). Furthermore, from
(1), these matrix elements vanish if n{ + n; + n} #n, + n,
+ ny + 2.

The reduced matrix elements of 4 *” are given in two
cases.

(1) Closed shell nuclei, ( Ay 11o) = (00): If the starting u(3)
representation ( A, u,) = (00), then the basis states are la-
beled completely by |(n,n,n;)a) for (n,n,n;)€ £2, since the
coupling to the scalar starting irrep is trivial. The nonzero
reduced matrix elements of A4 *” are as follows:

| 3y —ny 4+ 1)ny —ny 4 2)
[ No(rn, + 3)(n, — ny)n, —ny +2

((nin5n3)]|14 ®V |l non5)) = ¢

3ny —nsy + 1)n;, —ny + 1)
[ Nofns 4 2)(ny, — ns)(n, —ny 4+ 1)

(2) Nonclosed shell nuclei, ( A, py) 5 (00): For the general
case of nonscalar starting irreps, an 4 ?” reduced matrix ele-
ment is the product of a six-( Au) U-coefficient'’ times a sca-
lar u(3)-boson matrix element,

((mimyn3)o"(A 1) “l(nimona)o( A))
= (=) (nynyng)l|4 O (mynons))
XU ((Ao poliny — nay ny — n3)( A '1')20);

(Aulplni — n3, ny — n3)p’). 9

The scalar formula (8) is proved by directly verifying the

commutation relations, Egs. (2) and (3). A simple recoupling
is required to derive the nonscalar matrix elements (9).

V. DISCUSSION

Comparison of the commutation relations for sp(3, R ),
Eq. (4), with those for the u(3)-boson algebra, Eq. (3), shows
that the u(3)-boson matrix elements approximate thesp(3, R )
discrete series provided Ny»A, + 1, + n. In order to nu-
merically determine the symplectic matrix elements, the so-
lutions to the sp(3, R ) commutation relations must be found.
This can be achieved efficiently via the method of steepest
descent using the u(3)-boson matrix elements as a first ap-
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(L 3(m = +2)m —ny +1)

1/2
] , My =n,+2, ny;=mn, nj;=mn,,
)1/2
r LA 2 [
) ny=n, n; =H+2, hy=n; (8
172
] , ny=n,, ny;=~n, n;=n;+2

{
proximation. A computer code is available upon request.
Note that the matrix elements of sp(3, R ) are known analyti-
cally in only one special case (N, = 4, 12, = 0),'> which does
not arise for real nuclei. A recursion formula had been relied
on in previous work.'?

It is interesting to observe that the interacting boson
algebra of Arima and Iachello'* is mathematically isomor-
phic to our boson (Heisenberg) algebra. The eigenspaces of
the harmonic oscillator form the totally symmetric represen-
tations of su(6) required in the IBA model. This follows from
the observation that 4 *” is a six-dimensional boson contain-
ing angular momentum zero {s) and angular momentum two
(d ) bosons. If we take Ny = 3, ( A i£0) = (00) and set

s=B%  sT=4%,
02) ¥ 20) (10)
dm:BZm’ dm:AZm’
then
[s,s'1=1, [d..dl,]=(—-17"6, .1 (11)

and the IBA matrix elements are given from (8) and the
Wigner-Eckart theorem. Although our Heisenberg algebra
is the dynamical algebra of the IBA su(6) algebra, their phys-
ical interpretations are antithetical. In the IBA model, the s
and d bosons act within a major oscillator shell, whereas 4 **
raises the oscillator eigenvalue by two units.
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It is pointed out that when there are only two interaction terms in the Hamiltonian, the binary
collision expansion (BCE) for the scattering operator can be resummed into a closed form. When
there are more than two interaction terms, one can resum the BCE into a continued-fraction-like
form by using repeatedly the two interactions resummation. Concise derivations of the BCE are
first given, the time-dependent BCE being obtained in a form applicable to both quantum
evolution operators and classical frequency modulated oscillators.

PACS numbers: 03.65.Nk, 05.30. — d, 02.30.Mv

I. INTRODUCTION

The so-called “‘binary collision expansion” (BCE) has
been useful in various statistical mechanical problems, as
well as being of some interest in itself ': it expresses the scat-
tering operator corresponding to a Hamiltonian (or
Liouvillian?) of the form

N
H=K+V=K+ YV, (1.1)
a=1
as an infinite expansion in the scattering operators corre-
sponding to each sub-Hamiltonian

H =K+V,. (1.2)

The main purpose of this paper is to point out that when
the Hamiltonian contains only two interaction terms
(N = 2), the BCE can be resummed into a closed form. When
there are more than two interaction terms, one can use the
two-interactions-result repeatedly and obtain the scattering
operator as a kind of continued fraction.

We start by giving concise derivations of the BCE in
both the time and frequency domains. The time dependent
BCE is obtained in a form applying to the quantity

Ulr0)=T.. exp[ —i i fd: Va(t)], (1.3)

where T_ orders the V(¢ ) such that the time arguments
increase from right to left. If we let

V(1) = eV, e K, (1.4)
then
Ur,0) =e™ e (1.5)

is the interaction representation time evolution operator for
the Hamiltonian (1.1). But the ¥, (¢) in (1.3) may also be
classical functions (in which case the time ordering is super-
fluous) or matrices, e.g., U(r,0) may represent a classical os-
cillator or randomly modulated frequency equal to a sum of
terms, as is often met in relaxation problems.* The above
form of the BCE makes manifest its meaning as a “sum over
histories,” each history corresponding to a partitioning of
the time interval (0,7) into subintervals during each of which
a single one of the V(¢ )’s is “‘turned on.”
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. THE BINARY COLLISION EXPANSION

A. Time domain

We have
d 1
;U(T,O) = ;TVH(T)U(T,O), 2.1)
Uir0)=1+ JT dt ZL.VG(t)U(z,O). 2.2)
Q a 1

By applying (2.2) to U'™(r,¢)
=T. exp[—ifidt'2; . Vs(t')], while denoting

U,irt)=T._ exp[ - zf dt’Va(t’)], (2.3)

we obtain
U(r,0) = T_{U,(r,0)U'“(1,0)}

— TH[UG(T,O)[I + 3 ert—}-Vﬁ(t)

Bl#a

|
= U,(r,0) + B;ﬂ)ﬂ dt

XU, {7t )—1.— Vs(t)U (t,0). (2.4)
i

Note that in the integrand in (2.4), only V, is *“turned on”
from ¢ to 7. By introducing {2.4) repeatedly into {2.2), we
obtain the binary collision expansion

Uir0)=1+ ZJT dt m,(1,0)

+3 3 J- dtf dt’ m,(t,t \mg(t',0)
a Bl#ap0 0

+ dtf dt j dt”
RIS

Xm,(t,t )mglt’,t ")m,(t",0) + ..., (2.5)
where we denoted

m,(1,t)= %Va (U, (1,t) = -‘—;i;Ua (r,2). (2.6)

Consider, for instance, the integrand of the third term in
(2.5):init, only V, is turned on during the time interval (0,7 ”),
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only ¥, during (¢ ",¢ ), and only ¥, during (¢',¢ ); whence the
interpretation of the BCE as a sum over histories, as men-
tioned in the Introduction.

Expansion (2.5) may be written more compactly if we
define two “operators” A and A as follows*:

V. (t)Vs(t' if ,
V. (£ )Wy(t’ if ',
VAV = {Oa(t) s(t) 1fz§ 2.8)

(A and A are defined as equal to 1 when there are no V’s on
their left and/or right); thus A prevents adjacent interactions
from being identical, while A assures that the interaction on
its left is later than that on its right. Inside a product of m_,’s,
A suppresses the overlap between time intervals on its left
and right, e.g., if1>1¢',°

M (E0)Am(t',0) = m (£, Ymy(t",0). (2.9)

We may now rewrite (2.5) as

Ur0)=T_ exp[f dt Zma(t,O)AA ,
o a

where T'_ orders the operators m,(t,0lA such that ¢ in-
creases from right to left. A more direct derivation of (2.10)
follows from introducing (2.4) into (2.1):

(2.10)

d i
E;U(T,O) = 72-' Vv, (7')[ U, (r,0)
+i. D f dt Ua(r,t)Vﬁ(t)U(t,O)]
! Bl£ap0
1 T
= Ea:ma(r,ouA [1 + 7;L dt Vgt )U(t,O)]
= (Zma(T,OVM )U (7,0), (2.11)

which is equivalent to (2.10).

B. Frequency domain

When ¥V, (z) is of the form (1.4),° the terms of (2.5) be-
come multiple convolution products [of the operators
e"®m,, (1,0)] whose Fourier-Laplace transforms are ordinary
products; thus, by applying the operator (acting on functions

of 7)

F, Ef dre™e =K (2.12)
0
on (2.5), we get the frequency dependent BCE:
G () = Gylw)[1 + Ym, (o)
+3 S ma@mylo) + ]
a Bi#a)
r —1
=G|l — Zma/{ ] , (2.13)
where we denoted
~ -1
Glw) = 1F, Ur0) = (w —K-— ZVa) L (214
l a

Golw)=(w—K)™!, G l0)=(w—K—V,) ", (2.15)
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m, (@) = F,m,(r,0) = V,G,(v). (2.16)

An alternative more symmetric form, more convenient for
performing resummations,is [this is the ¥, transform of
2.11)]

-1
m=(l—2ma/l) -1, (2.17)
where
m=VG=G,'G- 1. (2.18)

The above expansions are usually given in terms of the
T-matrices

T=V+VGV=Gy(G—Gy)Ggs '=mGg', (2.19)

t, =V, +V, GV, =mG;, (2.20)
for instance,
-1
G= (a) —-K-— Ztai) =Gy + Y Got. G,
+3 3 Got,GotsGy + -, (2.21)
a B(#a)
(2.22)

T=W+ WGW with W=31,4.

For completeness, let us recall the direct derivation of
(2.21) from (2.14}): by using the identity
(4—B)"'=A4""+4'B(Ad— B)"', we get [taking
A=w—-K,B=2,V, andthend=0w0-K-V,,

B= 250%m VB]

G= Go(l + ;VGG), (2.23)
G= Ga( 1+ ﬁgm V,,G) (2.24)

[these are the i’m transforms of (2.2) and (2.4)]). Repeated
substitution of (2.24) into (2.23) yields (2.21); alternatively,
substituting (2.24) once into (2.23) and using the operator 4,
we obtain (using V.G, = t,G,)

G= Go[l + Zta/lGO(l + ZVBG)] = Go(l + Zta/lG)
a B a
(2.25)
which yields (2.21) on solving for G.

Hl. RESUMMATIONS OF THE BCE

Consider Eq. {2.17). Because of the operator 4, the
quantity (1 — =_m_,A )~ is, of course, not the inverse of
1 — =2, m,A ,butisjust acompact notation for expressing an
infinite series. That is, the BCE cannot be resummed into a
closed form simply. However, in the special case that the
interaction ¥V = 2, ¥, contains only two terms,
V=V, + V,, asimple resummation is possible. Consider

mo=1—-mA—mAd) ' —1
=m, +my+ mm, + mym, + mmm, + -, (3.1

i.e., the sum of all alternating chains in m, and m,. We distin-
guish four different contributions to (3.1): the chains which
both start and end with m, contribute
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m, +mum,m, + mimmm,om, + -
=(l—mmy)~'m;=m(l —mym,)”"; 3.2)
the chains starting with 7, and ending with m, contribute
mym, + mmym,m, + -
=(1—mmy) ' —1l=m(l —mym,)" 'm,. (3.3)

There are two other contributions obtained by interchanging
m, and m, above. Summing these four contributions, we get’

mp={1+m)l —mmy))~'(1+m)— 1 (3.4)

For the propagator G, we have (usingm + 1 =G 5 'G and
G, = Gy + Gyt,Gy)
G; = (1 + Gohy)goll + 1,Gp)
=G,Gq '9,G5 G, =GyGs '+ T )G, (3.5)

where
gn=—K— thozz)‘lr

are the propagator and 7-matrix for the “interaction” ¢,Gy?,.
When the interaction ¥ contains more than two terms,
one can still obtain resummed BCE’s by using (3.4) repeated-
ly, i.e., one first separates V' = 2 _ ¥, into two parts,
V=V, +V,, where ¥, and ¥, are themselves sums of in-
teractions, and obtains m in terms of m, and m, using (3.4);
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one may then divide the sum ¥, into two parts and apply
(3.4) to m,, (and likewise with m, ), and so on. One thereby
obtains m in a form akin to a continued fraction. For in-
stance, if V=V, + ¥, + V5, we have

myyy = (1 + my,) (1+my)—1
—mm;;
1 — m,m,
« 1
1

1 —m(1+my) (1 + my) —m,
— myms
X1 4+ m,)— 1.

(3.7)

'K. M. Watson, Phys. Rev. 103, 489 (1956); T. D. Lee and C. N. Yang,
Phys. Rev. 105, 1119 (1957); 113, 1165 (1959); A. J. F. Siegert and Ei
Teramoto, Phys. Rev. 110, 1232 (1958).
2U. Fano, Phys. Rev. 131, 259 {1963).
?See, e.g., A. Royer, J. Math. Phys. 24, 380 (1983), and references therein.
“For a usage of the operator A in another context, see A. Royer, Phys. Rev.
A7, 1078 (1973).
S (8,00 Amy(t",0) = V,(6)U, (1,8 YU, (t",00AV{t \Us(t",0)

= V (1)U, (8,t")V5(t YUs(t',0), since U, (t"0)AV4(t") = Vp(t').
®In the case that the V() are classical functions analytic in ¢, we can take
K= —id/dt.
"This is essentially equivalent to Eq. (44) of Ref. 2.
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We establish a common structure of all two-body off-shell scattering quantities (expressed in
momentum space or coordinate space) associated with Coulomb plus rational separable
potentials. We present expressions in so-called maximal-reduced closed form, including new
formulas: (i) for the off-shell Jost state for the Coulomb potential, (ii) for the off-shell Jost function
associated with the Coulomb plus Yamaguchi potential, and (iii) for the scattering, regular, and
Jost states in coordinate representation for Coulomb plus simple separable potentials for all /.

PACS numbers: 03.65.Nk, 25.10. + s

In charged-particle scattering theory potentials consist-
ing of the sum of the Coulomb potential and a short-range
potential play an important role. The two-body Coulomb
interaction has been extensively studied, see Ref. 1 and refer-
ences quoted therein. The additional short-range interaction
depends on the nature of the charged particles. In reactions
of more than two particles the so-called off-shell (part of thej
interaction comes into play. Various two-body scattering
quantities have been introduced, off-shell and on-shell: T
matrix, Green function {resolvent), physical scattering wave
function, regular wave function, Jost state, Jost function,
and quantities that are derived from these.

Separable potentials have attracted a great deal of atten-
tion mainly because of calculational advantages. Justifica-
tion of the use of such potentials is provided by the fact that
short-range local potentials can be well approximated by
rank-N separable potentials. For model calculations with
Coulomb plus separable potentials see, e.g., Ref. 2. The Cou-
lomb potential and more generally the sum of the Coulomb
potential and a short-range potential is not suitable for sep-
arable approximation. The long range [V (r) < 7™, r-— o]
causes certain difficulties and peculiarities which show up as
typical singularities in scattering quantities, cf. Egs. (3). This
fact makes any potential with an « ™! tail interesting from a
mathematical point of view. At the same time these singular-
ities present problems because not all of them can be handled
by the existing numerical techniques.® Therefore they
should first be studied analytically and then taken care of by
a combination of analytic and numerical methods.

Clearly it is important to have exact expressions in
closed analytic form for the aforementioned scattering quan-
tities associated with Coulomb plus separable potentials.
Not only are they useful for model calculations, they also
serve as guideline for and check on numerical calculations
with Coulomb plus other short-range potentials.

The main purpose of this paper is to reveal the general
analytic structure of the aforementioned two-body off-shell
scattering quantities associated with a potential that consists
of the sum of the Coulomb potential and a so-called rational
separable potential, for all partial waves, ¥, = V_, + Fgs;.
Important new formulas and known formulas will be pre-
sented as illustration of this structure.

We shall use the same notations as in previous related
work." Throughout we restrict ourselves to rotationally in-
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variant potentials. The Coulomb potential is V,(r) = 2ky/
r= — 2s/r. A rational separable potential is, roughly speak-
ing, a rank-N separable potential with form factors |g; ) that
are in momentum space expressed by p’ times a rational
function of p°. In coordinate space (r|g, ) is a finite linear
combination of functions of the form 7~ " P" (r) exp ( — B;7)
where P are polynomials. The simplest potential of this
large class is obtained by taking a rank-one potential

Vy = —A4,|g)(g/| with form factor

(ple)) = plga) = 2/m) ' 0> + 8%~ ',

(rlg,) = (irYe =P (ri))~".

We have introduced the name “simple separable potential”
for ¥;. The scattering quantities for ¥, plus a rational sep-
arable potential have a common analytic structure. In effect
it suffices to consider only ¥, + V. The generalization
from rank-one to rank-N involves in essence only matrix
inversion. Therefore we shall restrict ourselves to Coulomb
plus simple separable potentials.

We have derived all the aforementioned scattering
quantities, as far as yet unknown, in closed analytic form.*®
Most of these are in a form which we call “maximal-re-
duced.” This means that no further substantial reduction or
simplification is possible. An instructive and interesting ex-
ample is the expression for the off-shell Jost function for the
Coulomb plus Yamaguchi potential given by Eq. (10. The
closed form here has been broken up into elementary, “bare”
components. Another, simpler example of a maximal-re-
duced formula is given by Eq. (8).

It is important to realize that the maximal-reduced
form is not necessarily identical with the or an optimal form.
Clearly the qualification “optimal” depends on the end in
view. For the purpose of numerical calculations the maxi-
mal-reduced form will usually coincide with the optimal
form. Sometimes, especially for abstract discussions or cer-
tain derivations and formula manipulations, an implicit
expression is much more useful than an explicit one in closed
maximal-reduced form. An extreme example: In the context
of discussing properties of solutions of differential equations,
the scattering wave function should not be given in closed
form. Its definition—a particular solution of Schrodinger’s
differential equation—then is the optimal form.

Another interesting point concerns standardization.
Often different authors obtain different but equivalent ex-
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pressions for one and the same object. As “some closed
forms may be more closed than others,” it is obviously im-
portant to have a prescription for reducing an expression to
one particular form, preferably as convenient and as simple
as possible.

To become more specific now, we are going to formu-
late three statements, I-1I1. The first two concern the maxi-
mal-reduced form of the aforementioned scattering quanti-
ties {and of any object derived from these) associated with
V. + Vy. They hold a fortiori for V,; and V; separately.
The third statement concerns the explicit analytic form of
the typical on-shell singularity (caused merely by the long
range of the Coulomb potential) which we have studied be-
fore in detail.*

I. The Jost functions, the off-shell Jost functions, and all
two-body off-shell scattering quantities expressed in the mo-
mentum representation are conveniently expressed in terms
of simple (finite) combinations of elementary functions (poly-
nomials, complex powers), gamma functions, and either the
hypergeometric function F;, (2): = ,F,(L,iy;1 + iy;z) or
{especially for general /) the closely related function

FU (2= ([ + 1+ i)™ SR (Liy — Liy + 1 + 232),
1=0,1,2,... (1)
For the argument z fifteen expressions play a role:
AB,B* B,Ba,Ba—',Bb,Bb "' ba,ba™ ', a,a ', ad’,a/
a',a'/a,(aa’)”",
where
Ai=la+ikVla—ik), a={p—k)/p+k),

ai=p' —k)/p + k),
B:=B+ik)/B—ik), b =(qg—k)/lg+k)

The essential difference between ¢ and b concerns their
range in the complex plane: p is always real positive whereas
q is in general complex with Im ¢>0.

A typical and interesting example is provided by the
closed expression for the off-shell Jost function for the Cou-
lomb plus Yamaguchi potential, see Eq. (10). This is a nice
illustration of “being in maximal-reduced form.” It is clear
that no further essential reduction or simplification is possi-
ble despite the complexity of this expression.

1I. All scattering quantities expressed in the coordinate
representation consist of simple (finite) combinations of ele-
mentary functions (polynomials, complex powers), gamma
functions, and a “‘new” function V of four variables which is
defined, for Re z and Re a positive, by

Viacx, —2): =z “[(a)] "
szt“*‘(l+z)“*”*‘e‘“dr. (2)

)
Special cases of this function include [apart from elementary
functions and gamma functions] ,F, (1,¢;1 4+ a;z), |F,
(a;1 + a;xz), F,la;c;x), and U (a,c,x) (in the notation of Ref.
9). The factors (1 +¢)°~“~ ' and e ™™ in the integrand in
Eq. (2) can be expanded in powers of  and x¢, respectively. In
this way the function ¥ can be related, e.g., to certain conflu-
ent (generalized) hypergeometric functions of two variables:
@, and £, see Ref. 10, p. 225. However, the use of these
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functions seems not advantageous and hence such expan-
sions constitute no simplification. Rather, it seems that more
complicated and less transparent expressions result. We con-
tend that the function ¥, which is effectively just a primitive
of a simple elementary function, is the most elegant and best
choice for our maximal-reduced forms. Interesting and illu-
minating examples can be found in Eqs. (11) and {19).

II1. There exists a typical “Coulomb singularity” at the
on-shell point: p = k or ¢ = k. This singularity is generated
only by the long tail (range) of the Coulomb potential: «r—',
r— oo . It has the same analytic form for all partial waves and
for all potentials of the form V, = V, + ¥, where V, isany
reasonable short-range potential either local or nonlocal
{separable), see previous publications.* It is convenient to
have a simple, “standard” notation. To this end we use two
functions, @ and £2, defined by

— lig
o=tk = (L5 e ri v i, o
qg+k
where Im ¢>0 and £ is real positive, and

02: =0 kpy) = 1im(ﬂ__"€) -
0 \p + k + ie
X (e™2/(1 — iy)), (3b)

where p and k are real positive. Since clearly

liglw(k,p +iny)=2*kpy), p>0, k>0,
n

@ may be considered as an extension of £2. We have for the
off-shell Jost function and Jost state associated with ¥,

l{{rklwﬁ (k.q) =fi(k )=£, (4a)

lif:w|kqlr> = |kl 1), (4b)
and fi)r the off-shell 7" matrix and scattering state,

imQ27T, |p) = T, |kl ) = V, | kI + ), {5a)

p—k

}gmkﬂ tkpl + ) = |kl +). (5b)

We point out that the off-shell regular state is continuous at
p=k:

lim|kpl ®) = |kl ®). (6)
p—k
These regular states are defined by
Kl ®):=(1+GV)lkl),
|kpl ®): = (1 + G [¥,)|pl),

where G | is the Green function for the regular state, cf. Ref.
5 and Report 135 in Ref. 4. We have in general [cf. Eq. (15)]

|kl ®) = |ki+)f,
lim{r|kpl ®)/{ripl) = 1.

In general the basic complexity of the maximal-reduced
closed form for a certain scattering quantity is the same for
all / = 0,1,2. However, for / = 0 such an expression often
has,...a much more attractive and simple form. A striking
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example is the maximal-reduced form for the off-shell Cou-
lomb Jost function:
. ir
flkg)=b"" E(M> » 1=0 (7a)
qg—k
fulkg)=1—c, Ai(@*/k*sy)
+ e lg/k )b~ TP T M@), 1=0,1,2,...
(7b)

Herewr: = (¢° + k ?)/(2gk ),c,,,: = I (1 + ¥°/n*)~',and 4, is
a polynomial of degree /,

cnAilg*/k ) =R = L1l +iv 1 — iyl — ¢k %),

Clearly, only simple elementary functions play a role here.
Other examples involving more complicated functions are
provided by the closed forms for {(p|kl 1)., (p|T.;|p'), and
(piT.;|gl 1), seeRefs. 6and 7. Examples of the opposite case
in which the maximal-reduced closed formula for general / is
very similar to the corresponding one for / = 0 are given by
Eq. (19) and (cf. Ref. 1):

QI+ @+B)" """ puyp)
— N (@ —ik)B— ik) n

As illustration of the claimed general structure of scattering
quantities we present below a set of new formulas which
supplement previous results.** We have

(i) For I = 0: The Jost function f=f'(k ) associated with
the Coulomb plus Yamaguchi potential is given in maximal-
reduced form by

f=fplo+B-YFOB), (9)
where
fo =T (1 + iy),
pi=1B—ik)B*+ k)
=B+ ik)A "B —ikf —(28)"'FB?)]

For the corresponding off-shell Jost function we have ob-
tained

Slkg) =2

(8t 1Gr |gB/> =

“"p+B "FBb)lg —k)ig +i8)""
p +B —in(O)(B)

’

(10)

and the Coulomb off-shell Jost state |kg1). is represented in
coordinate space by

oc —1Ni
(rlkg1), = (2/77_)1/z£'k_e,-k, ( th ) Yezikrr dr.

iq q— ke N1+ ¢
(11)
It is interesting to note that
lim(2/7)~ " 2qr(rlkqt). = b = = f.(k,q).
r—0
This is a special case of the general formula
filkg) = lim<rikgl 1)/rlgl 1), (12)

which holds for any potential, see, e.g., Eq. (2.113) of Ref. 8.
(ii) For general | (= 0,1,2,...): The Jost function f; fol-
lows from

S =1+ dmhr (g [kl + ). c(KlL|g,), (13)
the physical scattering wave function is given by
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(rlkl +) = (rlkl + ) — 7eq {r|Gr181)

X gkl +)es (14)
the so-called regular solution by
(rlkl ®) = (rlkl + )/, (15)

and the Jost solution (“irregular” solution) follows from

(rlkIf 7 o = Pkl 1) — Toa (r|Golg)) (@i ]kIT).. (16)
These expressions are constructed from (in part) common
components, some of which are well known, e.g., [cf. Eq. (8)],

Tt =47 +{g1|Galg)),

(gl |kl + )c = <k |g1 )B _i}./fCTI

— (Z/W)I/ZkI(BZ + k2)~lf1
XB ~ e~ ™2 (I + 1+ iy)/IN (17)

The until now unknown components are given in closed
form by

(g 1kl1), = (kli|g;) = o{KlL|g7)fu
= fu(2/m)' "k "B — ik)™!

X (4k) =121+ 1Y) 2 FYB), (18)
and
(— 1) ( 2ik’r )’“(ﬁ—ik)"’ i
G =
<r| cl|g1> I!kr Bz+k2 B+Ik 4
B+ ik)/ — 2ik
XJ. tl+i7(1 + t)I_ iye2ikrt dt.
0
(19)

Finally, for the off-shell Jost state |kg/ 1) we have obtained
the nontrivial, interesting relation

|kgl 1) — kgl 1).

= [f}(kvq) _fcl (k’q)](k /q)l+ lfc? !
X [|kI1). + Golg)2mk )~ g |kl + )7 '] (20)

Here the form factor g; may be arbitrary.

Summarizing, we have revealed the common analytic
structure of all two-body off-shell scattering quantities, ex-
pressed either in momentum space or in coordinate space,
for Coulomb plus rational separable potentials, for all partial
waves. The complete three-dimensional Coulomb scattering
quantities have the same structure, as follows from known
results. We have discussed maximal-reduced closed forms
and proposed a standardization for the presentation of ex-
pressions for the scattering quantities. The use of maximal-
reduced forms facilitates comparison of different expres-
sions for the same object and offers an optimal form for
subsequent numerical calculations which in turn give the
connection with experimental data. New maximal-reduced
closed forms have been given in Egs. (9)—(11) and (18)—(20). In
Eq. (3) we have given a simple formula for the typical on-
shell singularity caused merely by the long range of the Cou-
lomb potential.
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We consider the partial waves of the two-body Lippmann-Schwinger equation for the 7’ matrix in
the case of the sum of the Coulomb plus a more rapidly vanishing potential. Using the knowledge
of explicit forms of the integrals determining the operation of the Lippmann-Schwinger operator
on the singularities that characterize the on-shell behavior of the Coulomb-like T matrix, we
extract a manifestly nonsingular integral equation from the Lippmann-Schwinger equation. We
show that the half- and on-shell inhomogeneous terms and solutions can be made as smooth as the
momentum representation partial projection of the non-Coulomb part of the potential.

PACS numbers: 03.80. 4 r, 11.20. — ¢, 02.30.Rz

1. INTRODUCTION

It is well known' that the most straightforward means
of getting two-body scattering amplitudes, half-shell and off-
shell 7' matrices—the Lippmann—Schwinger equation—
fails for the Coulomb interaction. This difficulty originates
in the nonintegrable singularity of the Lippmann—
Schwinger kernel. In the case of potentials vanishing at infin-
ity like #~' and more slowly, the Lippmann-Schwinger op-
erator is not defined in the neighborhood of the energy shell
even as a distribution.” In the two-body theory the knowl-
edge of analytic forms of many Coulomb quantities enables
one in the case of charged particles to bypass this difficulty.
The basic means is the Gell-Mann—Goldberger two-poten-
tial formalism.? The already classic approach uses the
known analytic expressions for the coordinate representa-
tion pure Coulomb wave functions.? By this method it is also
possible to obtain the off-shell wave functions® and inciden-
tally® half- and off-shell 7 matrices. The momentum repre-
sentation approach has been applied by van Haeringen et
al.”’ to the case of the potential ¥ = V. + V, where V. is
the Coulomb and ¥V a separable potential. The two-poten-
tial formalism yields the 7 matrix as the sum

T=Tc+ Ty,

T being the pure Coulomb 7" matrix. T is calculated in
two steps. First the Lippmann-Schwinger equation

tsc(z)=Vs + VsGcl2)tsc(2) (1)

is solved. In Eq. (1) G(z) denotes the pure Coulomb Green’s
function. The short range term T is then

Tselz) = [1 + VSGC(Z)]’SC(Z)[I + Gc(2) Vs]- (2)

We have used the same momentum space approach to
investigate a more general class of potentials.'® We have
shown this method to be applicable in principle to all poten-
tials vanishing in the coordinate representation at least like
r~ '~ <for some € > 0. In practical applications, however, the
presence of the singular operator V3G (z) in Egs. (1) and (2)
may cause difficulties even if its singularities have been in-
vestigated in detail.'"'

The operator V3G (z) is given by the pure Coulomb T
matrix 7(z). For the complete Coulomb 7 matrix several

2471 J. Math. Phys. 24 (10}, October 1983

0022-2488/83/102471-10$02.50

equivalent analytic expressions have been known for a long
time.” ' Some years ago the s- and p-partial waves were
found in closed form.”® Recently we gave a compact expres-
sion for an arbitrary / th partial wave.'' However, no such
information is available in the three-body case, i.e., no three-
body quantity is known in closed form. The only way to
obtain the three-body transition amplitudes is the direct so-
lution of the Faddeev equations.'* The Faddeev operators
are formed by the two-body T matrices, more exactly by the
two-body operators T (z)G,(z). The knowledge of their singu-
lar properties in the case of Coulomb-type interactions
should enable us to extend the validity of the Faddeev equa-
tions to the case of charged particles. We have given a de-
tailed study of the partial wave projections of these operators
both for the pure Coulomb'? and a general Coulomb-type'®
interaction. The two-body case should give a hint how to
exploit this piece of information. From this point of view the
mentioned method involving the two-potential formula is of
little use. It is therefore of interest to study the possibility of
regularization of the two-body Lippmann-Schwinger (LS)
equation if the interaction is of the Coulomb type.

In this paper we use the notation of Ref. 7. In particular
the basis states in momentum representation are normalized
so that

(plk) =5 (p — K 3)
and the / th partial wave is

lkly =k ?8(p— k). @)
In the coordinate representation the states

(rlk) = (2m)~>/2%e™ (5)
and

(rlke,dy = (2/m)" 2, (kn) (6)

correspond to the states (3) and (4), respectively. The partial
wave projections of a rotationally invariant operator 4 are
defined by

olA,lp'y = j dp P,(p')pl4 '), %

p standing for the unit vector p/p. The units are such that
#i=1and 2m = 1, m being the reduced mass of the pair of
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particles. In what follows & will be considered to be the
square root of the real energy E plus some small imaginary
part €>0:

k=(E +i€)"?, Im(k)>0. (8)
For e—0 we shall denote
ko = (E + i0)'/2. (9)

We consider a system of two charged particles interact-
ing via a superposition of the pure Coulomb potential

Velr) = 2ky/r (10)

(here we introduce.the dimensionless Sommerfeld parameter
¥ = e,e,/2k ) and a potential Vg which is short ranged in the
sense that it is, in the coordinate representation, a spherically
symmetric potential vanishing at infinity as

Vg(r)~r—'-" (11)
for some v > 0 and such that the usual scattering theory
holds; i.e., the wave operators exist and are complete for the

Hamiltonians Hy,, H = H, + V. A sufficient condition for
this to be true would be'®

® 1
f |Vs(r)|dr + f r|Vs(r)|dr< o. (12)

However, in what follows we shall work in the / th partial
wave projection of the momentum space. Instead of the con-
dition (12} we therefore formulate conditions on the partial
wave projections

Vsilpp') = (pl Vs lP':I)

=2 ["vanitonitpmrar (13)
These conditions are stated as Assumption 1 in Sec. 2. They
have been shown'? to include all local spherically symmetric
potentials vanishing for »— oo as (11) but they also admit

nonlocal potentials. What is most important, the kernels of
the partial wave projections of Eq. (1), and consequently also
of the partial wave projections of the ordinary LS equation.

T(E + i) = V + VG,(E + ie)T (E + ie), (14)
with ¥ = Vs, have been shown'® to be compact if V' satisfies
these conditions.

In the present paper we are concerned with the LS equa-
tion (14) for potentials

V="Vc+ V. (15)

Due to the assumed rotational invariance of the potential
(15) the T matrix—the solution of Eq. (14)—is also rotation-
ally invariant and its partial waves are defined via Eq. (7). At
this point it should be observed that though the partial wave
projections of the on-shell Coulomb and Coulomb-type scat-
tering amplitude do not exist'®'” in the ordinary sense (7), no
problems arise in the half- and off-shell case''; i.e., the partial
waves {p|T,(E + i€)|p') exist for €>0 for all values p' #p and
the partial wave series

& 2+ 1

(p|T(E + ie)|p’) = 2_’,0 y

converges in the ordinary sense. Instead of Eq. (14) we con-
sider its partial wave projections in the momentum represen-

P,(pp){ p|T,(E + i€)|p")
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tation
(PIT,(E + ie)lp") = Vi(p.p)

= Vipp" Wp"|TAE + i€)|p’
+J l(pp )<p |"21( ' )Ip> P”2dP", (16)
o E—p'i+ie
where
Vilp:p') = Vsi(pp') + Vel pp')- (17)

InEq. (17} Vs, isdefined by Eq. (13) and V', is the/ th partial
wave of the Coulomb potential (10) in the momentum repre-
sentation

, 2k 2 4 p'?
Vel p') = —V,Q,(%) , (18)
pp 2pp

@,(x) being the Legendre function of the second kind.

If p> # E #p? the T matrix in Eq. (16) remains off-shell
if e—0, thus the limit €0 can be taken. From Zorbas’ re-
normalization factor'® and especially from the analytic ex-
pressions'®!! for the singularities of the partial waves of the
off-shell Coulomb and Coulomb-type 7 matrix it is seen that
the solution of Eq. (16) with e—0 behaves for p'>#E and
p*—E like

const X ( p> — E — i0)7. (19)

[See also Eq. (30) of Sec. 3.] The existence of this singularity
is caused by the nonintegrable coincidence of singularities
In|E — p"?|(E — p"? + i0) "', which appears in the inte-
grand on the RHS of Eq. (16) if p* = E. The first factor ori-
ginates in the Coulomb potential (18) if p> = E and the sec-
ond is the free Green’s function. This coincidence of
singularities, which is characteristic of the Coulomb LS
equation, has been discussed already by Veselova.” In Sec. 3
we show that the singularity {19) has the property of being
conserved by the Lippmann-Schwinger operator V,G,,
where by V;, we mean the / th partial wave projection of the
potential ¥ defined by Egs. (13), (17), and (18). This basic
property of the operator ¥, G, is stated in Theorem 1 of Sec.
2. We do not give a proof of this theorem as it is a rather
simple consequence of an analogous theorem for the opera-
tor T,G, proven elsewhere.'*'? Besides, the simple analytic
expression (18) for the Coulomb potential makes it possible
to verify Theorem 1 directly. Theorem 1 of Sec. 2 is used in
Sec. 3 not only to prove in a way independent of the previous
results'®'! the form (19) of the on-shell singularity of the off-
shell T'matrix {p|T,(E + i0)|p')( p'*# E ) but also to find the
singular part up to terms of the order o[( p* — E)"], where
n =0,1, -, is, in principle, arbitrary. To fully exploit this
possibility we introduce in Sec. 2 an alternative stricter re-
quirement on the partial waves of the short-range potential
Vs, p.p'). If we require the function V,( p,p’) to be several
times Holder derivable in both variables p,p’ (potentials that
fall off exponentially in the coordinate representation are
analytic) we are able to split the solution (p|T(E + i0)|p') of
the LS equation (16) into two terms. In the first one the de-
pendence on the variable p is singular but is given in explicit
form, the second term is several times Holder derivable and
is the solution of a nonsingular integral equation. However,
even with only a Holder continuous potential F ,{ p,p’) the
integral equation for the regular term is free of nonintegrable
singularities.
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In the case when the initial momentum p’ lies on the
energy shell p’> = E the situation seems to be much more

complicated at first sight. First of all for p’ = JE , if we were
to take the limit €0 we should renormalize the 7 matrix
according to the formula'®

<P|T1(E+ i0)|k0>h.s.

=tim P = i) AITE ek, (20)
where

(PIT|E + i0)[ko)ws = 2I|Vilkoo +)

is the correct partial wave of the half-shell Coulomb-type T
matrix, {(r|k,/ + ) being the partial wave of the Coulomb-
type wavefunction [in the pure Coulomb case we have, e.g.,'®

2 I'(l+1+iy) _ ikor
k ,l+ .= (1/2)mry; 2k, 1,150
(rlkod +) \/— ;——6(21+ T (2kor)e

X Fill 4+ 1+ iy,21 + 2, — 2ikyr)].

It is immediately seen that the renormalized limit (20) cannot
be performed in Eq. (16) if we take p’ = k_ as the inhomogen-
eous term does not contain the singularity €.

On the other hand, if we try to write down the LS equa-
tion
(PIT/E + i0)| ko). = Vi( P Ko)

+ f = Vil pp NP | T E + i0) ko)

o (E — p'* + i0)

we find that the integral on the RHS of Eq. (21) is not de-

fined. To see this it is sufficient to write the expression for the
/ th partial wave of the haif-shell pure Coulomb T'matrix*"?°;

(p| T (E+ 0)| ko) s,

pdp’ (21)

=_el —(1/2}#7’[1‘(1_ly)r(l+1+ly)(l+l7/)“l
w ri+1—im\ 1
><P<,fn,»ﬂ<f+ké> (p* — E—i0)"
2pk, (P + ko)
i\ -1 2 2
—rq +t'7’)(l IW) P‘;‘ir‘ir)(p +k0)

2pk
w1+ ko) ] 0
p*—E +ioy7l’

where P{*#)(x) are the Jacobi polynomials.?' The second
term in the square brackets contains the singularity

(P —E+1i0)~",
which multiplied by the free Green’s function
(p* — E —i0)™ " is nonintegrable and undefined even as a
distribution. This is the reason why the LS equation (21) is
undefined.'

To treat the LS equation (16) correctly with p’ = k, we
have to be careful in taking the limit e—0. From the analytic
expressions for the singularities of the pure Coulomb and
Coulomb-type T matrix'®'! it can be seen that
(p|T,(E + i€)| ko) contains the singularity

ie i
const X | 5————] . (22)
p-—FE—ie
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In Sec. 2 (Theorem 2) we give the way this singularity is
transformed by the LS operator V,G,,. It appears that the
singularity (22) is again conserved. Moreover, a term repro-
ducing the potential V;( p,k,} (up to some factor) arises. In
Sec. 4 we prove that the off-shell 7 matrix {p|T,(E + i€)|k,)
contains the singularity (22) in the neighborhood of the ener-
gy shell independently of the previous results'®'! by showing
that a suitably chosen expression containing this singularity
satisfies (in the limit e—0) Eq. (16) with p’ = k,. As we shall
see the singularity (22) makes the potential V;( p,k,) reappear
in the expression for the integral

J"’ Vilp:p' (P TI(E + i€) ko)
o E—p?+ie

with the opposite sign. This cancels the inhomogeneous term
of Eq. (16) and settles the problem of taking the renormalized
limit (20) of the LS equation. The solution of Eq. (16) with
p' = kgyissoughtin the form of a sum of three terms, the term
containing the singularity (22), a term with the singularity
(19), and a regular term. The dependence on the variable p of
both singular terms can again be determined analytically,
the regular term is the solution of the same nonsingular
equation as in Sec. 3 with just a different inhomogeneous
term

pIdel

In Sec. 5 we briefly describe the way physical (on-shell)
values are obtained from the solutions of the modified equa-
tions. We also discuss the numerical applicability of the new
nonsingular equations.

2. LIPPMANN-SCHWINGER OPERATOR V,G,

Let us briefly review the consequences of our study of
the properties of the operator T,G,.'"'? All results concern-
ing this operator are valid for VG, if taken in the Born limit.
We shall state them in the form of two theorems.

For this purpose we introduce Banach spaces of Holder
functions defined on (0, «0)# 4, , (0, 0 ) as spaces of functions
with finite norms:

19 s = sup (1 +7°—Z— |10
Ppel0,e0) 1+ p°
th<1
+lerh- e,
A |*
with some a0, 60, and p€(0,1).
The short-range part of the potential ¥ will be sup-

posed to satisfy either of the following assumptions.
Assumption 1:

Vs PP VER 6,0,,(0,00) X B (0,0),

where u,€(0,1] and 6,,8,,a,,a, are arbitrary nonnegative
real numbers satisfying

0, +6,=1+6,

6;,a4.110

6,(0,1);
Assumption 2: Vg ,( p,p’) satisfies Assumption 1 and
moreover
Vsi(pp')eC ™ X C™

with Holder mth derivatives.
It is easily seen'® that the requirements of smoothness of
the potential in momentum representation are equivalent to

a;+a,=2— .
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restrictions on the asymptotic behavior in coordinate repre-
sentation. Thus, e.g., Assumption 1 restricts the class of ad-
missible potentials V to such that behave for —  roughly

like # ~ ' ~*#°, It has to be pointed out that Assumptions 1 and
2 admit both local and nonlocal potentials.

Theorem 1: Let $e A, ,(0,») (a€[0,3), 6€(0,2),
1€(0,1]), and suppose Assumption 1 holds. Then

- f Vilp.p')p” — E —i0f"~ ' (p')p"dp’
0

=[P ) p.E +i0,0,7)(p* — E — i0)"
+ 7, [®1(p.E +i0), (23)

where ¥, is an analytically defined functional (see the Ap-
pendix) such that the function ¢, [ ] is Holder with index u
in the variable p and

¥ [P Jko,E + i0,0,7) = D (ko). (24)

The function 7, [ @ ] is Holder with any index 1 < minfg,ut,).
For the whole integral (23) the following estimate holds:

f Vilpp'\p? — E— 10"~ ' (p')p"dp’
0

<C(l4+p=“) 1 +p)~°, (25)
where

a'e[0,2 —pJha' >a —1;

0'€[02]N0" <1+ 0NO' <6+ 6, (26)

If @ is n times Holder derivable and ¥V satisfies Assumption
2 then ¢, [® ] is n times Holder derivable and 7,[® ] is
min(m,n) times Holder derivable.

Theorem 2: Let @ be the same as in Theorem 1. Then

® r’ ie lr ’ . —_ ! ’ ’
J Vz(p,p)(—,z , ) (p* —E —ie)”'®(p')pdp
o p-—E—ie

1 &7 —e™ 7
= — ko ® (ko)W P Ko)

2 Iy
. i€ ¥
p-—FE—ie
+ €70, [ @ 1( p,E + i0,7) + o.(1), (27)

where ¥, is the same as in Theorem 1 but with opposite sign
for ¥y and o, [ @ ] is, under Assumption 1, Holder with any
index &’ < min(u,u,) in the variable p. Under Assumption 2
and if @ is n times Holder derivable then o, [ @ ] is min(m,n)
times Holder derivable. The sum of the last two terms on the
RHS of Eq. (27) satisfies the estimate (25) and (26).

3. OFF-SHELL 7 MATRIX

In this section we shall derive a nonsingular equation
yielding the T matrix fully off the energy shell. It means that
in the matrix element (p|7,(E + /0)|p’) the initial momen-
tum p’ £k, and there exists a neighborhood (K,,K) of the
energy shell such that

0<K,<ko<K,<w (28)
and
p'elK,,Ky). (29)
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We shall proceed as follows. We shall first formulate an an-
satz on the singular behavior of the T-matrix element
(0|T,(E + i0)|p’) in the neighborhood of p = k,. Then the
ansatz will be proven by requiring that the 7 matrix satisfy
the Lippmann-Schwinger equation. The proof will automa-
tically yield equation for the nonsingular part of the 7’ matrix
on (K ,K,). Finally, the equation will be completed for the
whole interval (0, « ) and given a compact form.

Our ansatz will be that on (K ,K) the off-shell Cou-
lomb-like 7' matrix can be written in the form

(p|T/(E + i0)|p’)
= a)(p.E + i0,iy)( p* — E — i0)"t,,( p',E + i0)
+ to,(pp'E + i0), (30)

where a/( p,E + i0,iy) and ¢,,( p,p’.E + i0) are some regular,
i.e., at least Holder, functions in the variable p and
t,,(p’,E + i0) is independent on p. [It is easily seen'®!! that
Eqg. (30) actually holds but we point out that it will be proven
independently using only the properties of the operator V,G,,
stated in Theorems 1 and 2 of Sec. 2].

The requirement that (p|T,(E + i0)|p’) satisfy the LS
equation yields the following.

Theorem 3: For pe(K,,K,) there exists a polynomial of
nth degree in the variable p* — E a\"( p,E + i0,iy) satisfying

aM(ko,E + i0,iy) = 1 (31)

and ¢, ,( p’,E + i0) independent of p such that for pe(K,K,)

PIT(E +i0))p')
= e L1 — ip)4k 3 'a p.E + 10,ip) p* — E — i0)"
Xty (p\E +i0) + 15} pp' E +10) (32)

is a solution of the Lippmann-Schwinger equation

@IT(E + 0)|p') = V,(p.p')
+J°° Viipp"p" | T,(E + i0)|p")

n2d II’
E+i0—p"* pap

(33)

and that under Assumptions 1 and 2 the function

t,,( p,p',E + i0) is Holder with an arbitrary index u <, or
min(m,n) times Hoélder derivable in the variable p, respec-
tively, and is zero for p = ky:

b, tkop',E + i0) = 0. (34)

Proof: For € > 0 the LS equation (16) holds for all values
of the initial and final momenta.?? If p#k, and p’' #k, the
limit for e—0 exists but has to be taken after the integration.
We shall therefore take e—0in Eq. {16) but we have to under-
stand this limit in the distributional sense. To see if the
expression (30) can satisfy the LS equation we shall substi-
tute it into Eq. (33):
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(p* — E — i0)"a( p,E + i0,ip)t, ,( p',E + i0)
+ ty(pp",E +i0) = V,(p,p’)

’ (L" LT)V’“”P")(E —p"? 4 i0)"!

X{ p"|T\(E + i0)|p")p"*dp"

K,
+f V(0" )E — p" + i0)~"ty,( p" 0" E + iO]p"dp"
Kl

K, ‘
_( V(pp")p"? — E — i0f7 !
K,

Xa,( p,E + i0,iy\p"*dp" 1, ,( p,E + i0). (35)

If we succeed in finding a,( p,E + i0,iy) and ;,,,( p0,E + i0) as
stated by the theorem the second integral on the RHS will be
nonsingular as well as the first one, in which the on-shell
singularities cannot be reached. We shall therefore consider
in the first place the last term on the RHS of Eq. (35).
Theorem 1 yields

K, '
- f Vi(p.p") p"* — E — 07~ 'a,( p" E + i0,y)p"*dp"
K,

=7 [al](P’E‘*‘ i0.K,,K)) + ¢, [a;](p.E+ i0,0,7)

X(p* — E — i0)7, (36)
where 7, [a, ] is an at least Holder function assuming g, is
also at least Holder. The most singular term is thus the sec-
ond one on the RHS of Eq. (36). After substitution of Eq. (36)
into Eq. (35) the singularities proportional to ( p*> — E — i0)”
have to cancel if Eq. (35) is to be satisfied. We shall require
that the equation

a/(p.E + i0,iy) = ¥, [2,](p,E + i0,0,%) (37)

be fulfilled at least up to some (arbitrary) nth degree of the
Taylor expansion of both sides in the variable p?> — E. If we
denote

fpi=Lf(pI" =3 & "f( E)p*—E)’,

<o /! (dp?)!

this means that we seek the solution of the equation

a(p.E + i0,y) = [¢,[a"]( p.E +i0,0,9)] ™,  (38)

satisfying the condition (31). In one of our previous works'?
we have shown (see the Appendix) that the solution of Eq.
(38) exists and, if Eq. (31) holds, is unique for any ». If we
denote by a,;(E,iy) the coefficients of the polynomial

tlp'E + i0)=e ™I (1 — iy)2kof""1, ,( p',E + i0)

Viko?) I

 ukoE + 105i1,K  K>)

uko,E + i03iy,K ,K)

a"(p.E + i0,iy) = 2 a,(Eiy)p* — E)’,
=0

we can say more exactly that there exists a recursion formula
relating all coefficients a,;(E,iy) for j > 0 to the zeroth order
coefficient a,,, which is chosen equal to one. The formula as
well as its application to the calculation of the first-order
coefficient are written out in the Appendix. We find, e.g.,
that

. % 1
a,(Eiy)= — LI (39)

2E

which is in accordance with the exact expression'’ for q,.
Having solved Eq. (38) we shall denote

ul(p.E + i0;iy,K,,K,) =7, [a‘")](p,E + i0;K,,K)
+ R, [%i[a"]](PE+ 007} p* — E — 0}
K>
= - J Vilp.p")

K,
X(p"* — E ~i0|" " 'af’ p",E + i0,iy)p"*dp"
— a"(p,E + i0,iy)( p* — E — i0)" (40)

and
t{)(p.p'E + i0) = t,,( p,p",E + i0)

+ R, [a:](p.E + 0,iy)( p* — E — i0)"1,,( p',E + i0),

(41)
where R, [ f] stands for
R, Lf1=f~1"

On account of Egs. (40) and (41) we can rewrite Eq. (35)in the
following form:

K, ©
tSpp E+i0)=V,(pp)+ (f + j )
0 K,

Vz(P,P")(P”ITz(E + i0)|p’)
E—p"?+i0

K,
+J Vil pp")E — p" + i0) 't ) p" ' E + iO)p"*dp”
K

" 2dp ”

+ u"( p,E + i0;iy,K,,K )t ,( p'E + i0). (42)

If Eq. (34) is to be satisfied then the RHS of Eq. (42) has to be
zero for p = k,. In the Appendix we show that the constants
K, and X, can always be chosen so that

u"(ko,E + i0;iy,K |,K,) 0. (43)
By (A3) it is possible to take

[(r + Lj)mko,p")

K,
X(E = p" 41077 p" |TE +10) p)p"dp" + [ Vo NE —p 4 i0) 451 p" 0B + 0" dp" | (44)
K,
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To complete the proof let us observe that for pe(K ,K,)
the first two terms on the RHS of Eq. (42) are under Assump-
tion 1 or 2 Holder with index p2, or m times Holder derivable,
respectively. By Theorem 1 {with ¢ = 0] the operator V,G,,
with ¥, satisfying Assumption 1 or 2 maps the space of
Holder functions with indices p < 1 into itself or the space
of n times Holder derivable functions into the space of
min{m,n) times Holder derivable functions, respectively.
This statement can be applied to the third term on the RHS
of Eq. {42) which, due to the fact that the last term is # times
Holder derivable, yields the properties of the function
t9) p,p’,E + i0) stated by the theorem.

To get a closed set of equations, Eqgs. (42) and {44) must
be completed by the equation for {p|T,(E + i0jjp') with
pe[K,,K,]. This equation is easily obtained by substitution of
Eq. (42) into Eq. (33) now with p&[K,,K,]. The resulting
equations can be given a compact form similar to that of the
original LS equation. Let us denote

T p.p',E + i0)
= Xx,&,| P SN PP E + 10)
+ [ = x5 2] P TAE + 0)ip'), {45)
U\ p,E + 0)
= Yk, P D.E + i0:iy.K Ky

K, )
+ 1= Xl P)] [ Vil oo do” —E— o
X a{"( p',E + i0,iy\p™dp' (46)
where v, x,(p) = 1 for pe[K,K,] and is zero elsewhere and

7 pp E+i0)=V,(pp)
%" p.E + 0, (ko,p')
uko,E + i0;iy.K .K,)

We arrive at the equation
T pp'E +i0) = 7 pp'.E + Q)
+ [ 4 ot - p
X .7?({"@" 2 E + i0p"%dp". (48)

The conditions for the behavior of the potential Vs, on
both ends of the interval (0, o } have been chosen so that the
compactness of the LS operator is ensured.'® It is easily seen
that the Coulomb potential satisfies these conditions too.
The noncompactness of the Coulomb-type Lippmann—
Schwinger operator results in the singularity of the solution
{ p|T,(E + i0)[p') on the energy shell p? = E. In the neigh-
borhood of the energy shell the integrand (48) has been modi-
fied by extracting the singularity of the solution in such a
way that (E — p"%)~ "7\ p”,p’,E + i0) has at most the inte-
grable singularity |p”> — E |* ~ . This singularity remains
integrable alsc if combined with the logarithmic singularity
of the modified potential 7" p,p”,E + i0), which origin-
ates in the pure Coulomb potential (18). As a result Eq. (48)is
for any n>0 manifestly nonsingular.
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4. HALF-SHELL 7 MATRIX

In the previous section we excluded the possibility of
the initial momentum reaching its on-shell value. This was
because in this case additional singularities appear. How-
ever, it appears that the method of Sec. 3 can be applied again
with just slight modifications. It is well known?? that the
limit for e—0 of the matrix element {p|T,(E + i€)|k,) does
not exist. Therefore, it is impossible to set €0 from the very
beginning. Another reason why we have to take € > 0 is that
the limit of the Lippmann—Schwinger equation (16) does not
exist even after renormalization. We shall formulate, in the
same way as in Sec. 3, an ansatz on the form of the 7 matrix
in the neighborhood of the energy shell. This time the energy
shellis approached in two ways, for e—0 and p—, and both
limits are singular. Subsequently, the ansatz will be proven
by substitution into the LS equation. In spite of all the men-
tioned differences the proof will again yield directly a regular
equation for the nonsingular part of the renormalized half-
shell T matrix.

In the limit e—0 the oscillating factor [see Eq. (20}]

I {1 — iy)(e/4k })" appears in the matrix element
{p|T,|E + i€)|ky)."*** Taking this fact into account we shall
seek the solution of Eq. (16) with p = &, in the form

PI|THE + i€)\ko) = — (i/mhk) (1 + iy)
X I (1 —iy)b(p,E + i0,iy)

X( 5 )ir+ tr 1 — iy)e, p,E + i0,iy)
p’—E —ie kg

(P —E~i0)" _,
X S {E ) (zkojzh’
+ r(P.E + 0 (1 — iy)(2ko) " *7€” + o, (1) (49)

for pe(K |,K,), the constants K|, X, being chosen according to

(28). The functions b,,c,, and r, are assumed to be at least

Holder. The constant factors are introduced only for conve-

nience (see Sec. 5). We shall prove the following theorem.
Theorem 4: For pe(K,,K,) and e—0

@|T/(E + i€)| ko)

(1 +in{l —iy)a™(p,E + 0, — iy)

ky
i€ 4 i 2 .
X + %1 — i
(p2 —~E— ie) 7k, =i
:_E_op
X o p.E + i0,iy)s (BN —E— B or

(ko™
+ A p,E + O (1 — iy)2ke) = 27" + 0 (1)  (50)
satisfies Eq. (16) with p’ = k; and e—0. In Eq. (50)
a( p,E + i0, + iy) is the same as in Sec. 3 with the opposite
and the same sign of ¥ in the first and second term on the
RHS, respectively. Under Assumptions 1 and 2 the function

A" p,E + i0) is Holder with an arbitrary index u <o,
min(m,n) times Holder derivable, respectively, and such that

ko, E + i0) = 0. (51)

Proof: In the same way as when proving Theorem 3 we
shall substitute the expression (49) into Eq. (16) (with
P’ = ko). Without writing the obtained equation in detail we
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note that the following two relations will be needed:
Ky )
~ | Vilpp"N P — E— i)

Xcl(p",E"' l'O,i}/)p"zdp"
=¥.[¢,)(p.E +i0,0,Y)(p* —~ E — i0)"

+ 7 (e, ]{P.E + i0;K ,K>) (52)
and
K, . i
| mp,p")(ﬁ_?) (P E—ie)!
xb,(p" ,E + i0,iy)p"*dp"
e —e~ ™ i~
= - Tkobl(kO’E + i0,iy)Vi( p,ko)
—¥,[b,1(p.E 40,0, — 7)
> (p—z_—‘E%E)W +0,[b,](.E + 10K K, )e”
+o.(1). (53)

Equation (52) results from Theorem 1 and Eq. (53) from
Theorem 2. Moreover, we shall introduce the half-shell T
matrix by'®!!

P|TH(E + ie)| ko)
€
=I(l1—i
-4
In the obtained equation we shall require that the terms con-
taining the same type of singularity cancel. First of all two
terms on RHS do not contain the singularity €, which

)"’<p|T,(E 4 10) kb + 0. (1). (54)

term arising from the first term on the RHS of Eq. (53). In
order that they cancel we have to take

b(ko,E + i0,iy) = 1. {55)
Furthermore, we shall require that

b/(p.E + i0,iy) =4, [ b, ](p,E + i0,0, — ¥) (56)
and

¢(p.E + i04y) =9, [¢;](p.E + 10,0,7). (57)

Taking into account that in the expression (49) ¢, forms a
product with a still undetermined factor s,(E ) we can choose
¢,(ko,E + i0,iy) arbitrarily. We shall set

c)lko,E + i0,iy) = 1. (58)

Equations (55}(58) imply

b,(p.E + 10,iy) = a)( p,E + 0, — iy)
and

¢/ p.E + 10,iy) = a,( p,.E + i0,iy).

As before we shall solve Eqs. (56) and (57) only up to an nth
degree of the Taylor expansion in p* — E, i.e., Eq. (38) will
hold. Introducing then

A p,E + i0) = r){ pE + i0) — (i/mkol["(1 + i7)
XR, [a;](p,E + i0, — iy)
X(p* — E+i0)~"

j( I(1— iy)(2k)~75,(E)

TKg

XR,[a,;}(p.E + i0,iy)( p* — E — i0)"

“+

makes the renormalization of the RHS impossible. These (39)
terms are the potential term of the original Eq. (16) and the and
J
vy p.E + i0;iy K,,K;) = o, [ a(.E + 10, — i) ] (p.E + i0;K,K>) — R, [¢,[a"( p.E + 10, — i¥)] ](P.E + 10,0, — )
x(p*~—E +1i0)~7, (60)
we arrive, after multiplying by the renormalization factor I ~'(1 — iy)(e/4k 2) ~  and taking the limit €0, at the
equation
AN P.E +10) = ——I'(1 + iN|2ko " p.E + 0siy K Ko
0
+ — (1= ip)2ko) =75 (E uf( . + 05y K ,K)
Ko
Ky o
([ [ )toennE=pm 4 001 TiE + Ok, 57
K, :
+ | Vipp")NE —p"* + 0" A" p” ,E + iOp"*dp”, (61)
K,

where u{" is defined by Eq. (40) and {p|T;(E + i0)|k,),, is the Coulomb-like half-shell 7' matrix introduced by Eq. (54). In
order that (51) be satisfied s,(E ) has to be determined by the following relation:

i

L1 (1 — iy)2ko) =275, (E) = —
ke

TKo

T+ iy)(2ko)*”

U‘In)(ko’E + i0;iy,K | ,K)) . 1

ko, E + i0;iy,K ,,K)

K, K,
Vi(p,p”
Wk E + io;iyx,,xz)[(L N L) PP

X(E —p"* + i0){p" | T,{E + iO)ko)y,, " *dp”

K,
+ L Vi(pp"VE —p"* +i0)~'r"(p".E + io)P"zdP"] , (62)
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where K, and K, are again supposed to be chosen so that (43) holds.

As far as the dependence on the variable p is concerned Eqgs. (61) and (42) differ only by their first terms on the RHS. The
first term on the RHS of Eq. (61) is, however, Holder with index u < 14, min(m,n) times Holder derivable, under Assumptions
1 and 2, respectively. As a result the concluding consideration of the proof of Theorem 3 applies to the present case too. This

completes the proof.

Denoting
T pko,E + 10),, = XK,.KZ(P)"(I’"( p.E +10) + [ 1 _XKI,KZ(p)] @ITE + 0)| ko). » (63)
ZVp,E + i0) = ; I'(1+ ir)(2ko)2"’[)n<.x2 (P p,E + i0;iy,K 1K)
Ko
K,
+[1 = Xxyx, 2] f Vi pp")\(p"* = E +i0)~ 7~ 'af p" E + 0, — iy}p"?dp" |, (64)
K,
f
and mann—Schwinger equation for the off-shell 7" matrix can be
2 p,E + i0) considered as a means of calculation of the half-shell 7' ma-
) trix and, in the same way, the equation for the half-shell T
= & p,E + i0) — d (1 + iy)(2ko)*” matrix yields, when the final momentum is set equal to its
ko . on-shell value, the on-shell 7" matrix. The same can be said
Y p.E + i0 . o .
XU ko E + 10:7,K 1K) 7(p.E + i0) ’ apout the equations obta.n_ned in Secs. 3 and 4 W}th the only
u ko E + i0;iy.K ,K,) difference that the transition to on-shell values involves the

(65)
with %" and u{" defined by Eqs. (40) and (46), we obtain the
resulting integral equation in the form

TP prkoE + i)y,
= Z{(p.E + i0) +J- 7" pp'E + O)E —p*)~"
(o]

X TP koE + i0), . pdp’ (66)

where 7" is given by Eq. (47).

Similarly as in the case of the ordinary Lippmann—
Schwinger equation for short-range interactions the modi-
fied off- and half-shell equations (48) and (66) differ only by
their inhomogeneous terms. Both inhomogeneous terms
have the same properties and Eq. (66) is again manifestly
nonsingular for any #7>0.

5. CONCLUSIONS

Starting from the Lippman-Schwiriger equation which
is, in the case of Coulomb-like interactions, highly singular,
we have obtained in Secs. 3 and 4 a manifestly nonsingular
equation yielding via Eqgs. (32) and (45) and (50) and (63) the
Coulomb-like off- and half-shell 7" matrix. This is guaran-
teed by Egs. {34) and (51) together with the Holder property
of the solutions because then

TV p"p'E + i0)

<E(p.E+10)|p?—EF~!
7 _E (p )P I

for all n>0 and the modified potential contains only the loga-
rithmic Coulomb singularity.

For a derivable short-range potential V satisfying As-
sumption 2 the expression in the absolute value above can be
made continuous and smooth, which greatly facilitates the
numerical treatment. In this case the only singularity left in
the integrand is the Coulomb logarithmic one. To treat this
singularity, e.g., the subtraction method? can be used.

When no long-range interaction is present the Lipp-
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Coulomb renormalization.'®'"!8 Equations (31), (32), and
(34) yield

ns. (ko| TH{E + i0)|p) = t, ,( p',E + i0)
and Egs. (31), (50), and (51) imply"’
4L(E) = is,(E )/ kg,

where ¢,(E ) stands for the properly renormalized on-shell
value of the Coulomb-like 7" matrix, i.e.,

s;(E) = exp[2i5,(E)],
where 8,(E ) is the phase shift of the total Coulomb-type po-
tential ¥ + V. { After the limit e—0 has been taken in Eq.
(50) the first term on the RHS of Eq. (50) contributes a non-
renormalizable singularity on the energy shell. However, for
p’—E this term is independent of / [by Eq. (31)]. As the
partial wave decomposition of the on-shell T matrix exists
only in a distributional sense which ignores the singularity in
the forward direction, and as terms of the partial waves that
are independent of / contribute only just to the value of the
nondecomposed 7 matrix in the forward direction, such
terms are ignored and are to be left out. See Ref. 11 for a
detailed discussion. }

The calculation of the half- and on-shell values is thus
performed in analogy with the short-range case in two steps.
First Eq. (48) or (66) is solved with a p variable and then the
half- or on-shell matrix element is calculated by substituting
the solution into Eq. (44} or (62}, respectively.
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APPENDIX

In Theorem 1 we have introduced the functional ¢, . Itis
defined by the following set of relations'*:
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¥,[@1(p.E +i0,0,y)
=-—[P,( )‘P:[‘P](P,E+1007’)
__12’1(_”:_&_ —E) E +i0,0 ]
e (1+1)(p Vo, [P 1(p.E +10,0,7) |,

(A1)

@, [P p.E+i00,y)=(p*—E— iO)_i’ﬂl_if.gl iy

)¢( g4 +

1”2 k
S (e
E 'k

. lo)ﬂ + iy — ldPIZ’

(A2)
WA 2 g e ) .
— i)Y @ 1(p,E + i0,0,
2(zy+l)( i0) W'[ 1{p,E + i0,0,7)
P
=Lﬁ“’(p ' ko; — i0y7® (p')dp",
(A3)
where
(PP +k3)p?+k} ))
W p,p’k,;0 ——P
AN p.p'ko;0) = j; IJ( pRE:
2 _ k2\p'? — k)Y !
X(_(P ollp o)) ’ (Ad)
dpp'k %

P, ;(x) standing for
adV
P/,,‘(X) = (E‘) Py(x),

P,(x) being the Legendre polynomial.
It is easy to show that if

o(p)= 3 PE) P —E)s
then T

(D 1(pE+i007)= 34, 1EQY) 7 —EV,
where T

4B ESY) = 3 MUEOH P —EN"

m=20

M) (E,0,y) are the coefficients of the Taylor expansion

(2 — EY"1(p.E +10,0,7) = }:M‘”(EOJ’ P —EY.
(AS5)

Equation (38) then reduces to

j
> M (EOy)a,,.(Eiy), j=1,..,n.  (A6)

m=0

a;; (E.iy) =

Equations (A 1)-(A4) can be used to calculate the coefficients
M () (E,0,y) explicitly. It is especially easy to get

MUEOy =T (A7)
iy +j

This shows that for j > 0 Eq. {A6) can be solved for a,;:
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i) = (1 = MYEON™'S, MUEO i Ei).
(A8)
Let us calculate g;; as an example. Assuming
a,4(E,iy) = 1 we have from Eqs. (A6) and (A7)
a;, (Edy) = (iy + DM YL(E0,7). (A9)

Therefore it is sufficient to find M {}(E,0,i7), i.., to get the
first degree Taylor expansion [¢,[1](p,E + i0,0,y)]“’. By
(Al) and (A2)

[¢:[11(p.E +i0,0,9)]"

2 k 2 (1)
- [&p, (" Ko )¢, [1](p.E +i0,0,7)
D 2pk,

PP—E

’

2E

=1—

ie.,
M{LEDQy)= —(E)™"
Equations (A9) and (A10) yield Eq. (39).
In Sec. 3 we assert that there exists K|, K, satisfying (28)
and (29) such that (43} holds. To prove it we shall use the
definition (40):
u(ko, E + i0;iy,K ,K,) = 7, [ @] ko, E + 10K ,K,).

Assuming
K, — k0| <4, |K2 - ko| <4,

where 4—0, we decompose the RHS into the contribution of
the pure Coulomb part ¥ and the short-range part ¥V of the
potential:

7 [aP) =7c,[a"] + 75 [@"]-
For the short-range term it is easily seen that
751 [@] ko, E + i0;K,K>)

koVs (kook :
_ _ Ko s,1¥ 0! 0) [(K% —-E—iO)"'
2iy
— (K} —E—i0)"] +04(1) (A12)

holds. As far as the pure Coulomb term is concerned we can

use the results of a previous paper'? to obtain after some
manipulations [¢(z) = I ‘(z)/T" (z)]

(A10)

(A11)

Tci [a‘ln]] (ko.E + 10;K ,K,)
= — —[g&(l + 1) — (1) — /iy — 2 In 2k,]
ks
X [(K} —E—i0)” — (K3 — E — i0)7]

—L[(K2—E—i0)"In(K% — E —i0)
T

— (K} ~E—i0)71n (K} — E — i0)]

— (K% — E —i0f" + 0,(1). (A13)

After substitution of Eqs. (A12) and (A13}into Eq. (A11) we
get three linearly independent terms, two of which are surely
nonzero [the last two terms on the RHS of Eq. (A13)], if we
consider them as functions of X |,K,. Hence

u(ko,E + i0;iy,K ,K,) cannot be identically zero as a func-
tion of K| ,XK,,.

J. Dusek 2479



'E. Prugovecki and J. Zorbas, J. Math. Phys. 14, 1398 (1973).

2A. M. Veselova, Theor. Math. Phys. 35, 180 (1978).

M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
“J. R. Taylor, Scattering Theory (Wiley, New York, 1972).

°F. Gesztesy and B. Thaler, J. Phys. A 14, 639 (1981).

SL. Trlifaj, Czech. J. Phys. B 31, 969 (1981).

"H. van Haeringen and R. van Wageningen, J. Math. Phys. 16, 1441 (1975).
8H. van Haeringen, J. Math. Phys. 18, 927 (1977).

°H. van Haeringen and L. P. Kok, Phys. Lett. A 82, 317 (1981).
193. Dusek, Czech. J. Phys. B 32, 1325 (1982).

'J. Dusek, Czech. J. Phys. B 31, 941 (1981).

'2J. DuSek, Czech. J. Phys. B 32, 1195 (1982).

13S. Okubo and D. Feldman, Phys. Rev. 117, 292 (1960); R. A. Mapleton, J.

Math. Phys. 2, 482 (1961); J. Schwinger, ibid. 5, 1606 (1964); L. Hostler,
ibid. 5, 1235 (1964); W. F. Ford, Phys. Rev. 133, B1616 (1964).
L. D. Faddeev, Trudy Mat. Inst. Acad. Nauk SSSR 69 {1963), Engl.

2480 J. Math. Phys., Vol. 24, No. 10, October 1983

transl.: Mathematical Aspects of the Three-Body Problem in Quantum
Scattering Theory, Israel Program for Scientific Translation (Jerusalem,
1965).

'SM. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol.
III: Scattering Theory (Academic, New York, 1979), Chap. XI. 4.

'6J. R. Taylor, Nuovo Cimento B 23, 313 (1974).

'""M. D. Semon and J. F. Taylor, Nuovo Cimento A 26, 48 (1975).

'8]. Zorbas, J. Math. Phys. 17, 498 (1976).

M. R. C. McDowell and J. P. Coleman, Introduction to the Theory of Ion-
Atom Collisions (North-Holland, Amsterdam, 1970).

20H. van Haeringen, J. Math. Phys. 19, 1379 (1978).

2'H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-
Hill, New York, 1953), Vol. 1I.

22J, Zorbas, J. Math. Phys. 18, 1112 (1977).

3W. M. Kloet and J. A. Tjon, Ann. Phys. 79, 407 (1973).

J. Dugek 2480



Theory of light cone cuts of null infinity®

Carlos N. Kozameh and Ezra T. Newman

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 1 March 1983; accepted for publication 3 June 1983)

Light-cone cuts of null infinity are defined to be the intersection of the light cone of an interior
point x* with the future nuil boundary of the space-time, i.e., #*. It is shown how from the
knowledge of the set of light-cone cuts of .# ™, the interior (conformal) metric can be
reconstructed. Furthermore, a differential equation defined only on.#™" is proposed so that (1) the
solution space (the parameters defining the set of solutions) is identified with or defines the space-
time itself and (2) the solutions themselves yield the light-cone cuts which in turn give metrics
conformally equivalent to vacuum solutions of the Einstein equations.

PACS numbers: 04.20. — q, 03.40. + x, 02.40. + m

I. INTRODUCTION

The usual description of differential geometry and gen-
eral relativity is in terms of local fields, e.g., the metric, the
curvature tensor, etc., which satisfy local differential equa-
tions as, for example, R, = 0. Itis our purpose here to intro-
duce a new nonlocal field, denoted by Z, from which the
local fields can be derived.

Basically Z, though it is nonlocal, should be thought of
as a function on the bundle of null directions on a space-time,
i.e., Z should depend on the space-time points x“ and points
on the sphere of null directions which we coordinatize by the
complex stereographic coordinates (£, £ ). We thus have
Z (x5, 6)-

Our program can be divided into two parts. In Sec. 11
we will discuss the geometric meaning of Z and the relation-
ship between Z and the local field g,,. We make the claim
that knowledge of the metric (or conformal metric) allows Z
to be calculated and, conversely, knowledge of Z permits the
calculation of the metric up to conformal factor. In Sec. III
we wish to suggest field equations for Z which would be
equivalent to the vacuum Einstein equations for g, .

For simplicity we will confine our discussions to the
case of space-times which are asymptotically flat in future
(or past) null directions."? (There is a formulation of our
results for a local region of an arbitrary space-time.)

In order to introduce Z, we assume that we have a mani-
fold M with boundary .# * with a given metric g,, on it.
Since we know the metric on the entire manifold, we can (in
principle) integrate the null geodesic equations so that all
null geodesics are known. From this knowledge it would be
possible to construct all the null cones with apex at arbitrary
points. This can be described by the equation

L{x*x"%) =0, (1.1)

with x° denoting the apex of the cone and x’? points on the
cone. L , is a smooth null gradient field except for the apex
and conjugate points. Note that x° and x’¢ are on equal foot-
ing since for fixed x’“ the points x* that satisfy Eq. (1.1) form
the null cone emanating from x’“ (see Fig. 1). The idea is now
to move one of the points, say x’%, to null infinity, i.e.,to .# *.

* This work has been supported by a grant from the National Science Foun-
dation.
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Introducing a standard Bondi coordinate system” (u,5 ,r)in
the neighborhood of £ * (with 7 = 0 on .# ), we write
X" = (u,&,E,r = 0). Equation (1.1) thus becomes

L{x"x"%) =L x*utt)=0, (1.2)
or by solving for u
u=2ZxL5E). (1.3)

[Note that the function L is not unique since it can be
multiplied by a smooth, nonvanishing & (x,x’) and Eq. (1.1)
would still hold. However, for x’® = x’* there is a unique
choice (relative to the Bondi coordinate}, namely,

L (x*x’°) = u — Z (x*,£,€ ) and therefore the cuts are de-
scribed by u = Z (x%, £,€).]

For arbitrary but fixed u,£,Z, Eq. (1.3) describes the past
null cone from a point on .# *. An alternative but equally
important interpretation of (1.3) comes from the reciprocal
meaning of Eq. (1.1); if x® is held fixed, then Eq. (1.2) de-
scribes the intersection of the null cone of x® with .# *, i.e., as
¢&,E are varied, a “cut” of # * is defined which locally will be
a 2-surface and therefore can be described by Eq. (1.3).

{ For special cases (e.g., flat space) these light cone cuts
(LC cuts) will be S 2. However in general, due to the focusing
effects of the space-time curvature the light cones will have
self-intersections and hence the cuts themselves will have
self-intersections or singularities [see Fig. 2(a),(b)].}

In addition to the two meanings already given to Z, it
can also be thought of as a function on the bundie of null
directions. The assignment of the (£,£ ) to a null direction is
via the intersection of the null geodesic (with that direction)
and a generator (£,{ ) of 7. This shows clearly the nonloca-
lity of Z.

We now consider the converse problem; namely of how,
if some appropriate Z (x°,£,£ ) is given, does one reconstruct

FIG. 1. The points x° and x’* are
joined by a null geodesic.
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FIG. 2. (a) For Minkowski space the cuts are ellipsoidal figures (with the
sphere as special case). (b) For a general space the cut may intersect itself
several times.

the conformal metric g, (x). To avoid at present a discussion
of what is meant by the phrase “appropriate Z,” consider the
situation where we began with a metric and the Z (x*,£, ) is
found from it. If we now forget the metric and retain know-
ledge only of the Z, we ask how can the metric be recon-
structed.

This question is not hard to answer when we realize that
for arbitrary but fixed (1,£,¢ ), Z,,=V,Z must be a null vec-
tor field on M [because ¥ — Z (x°,¢,¢ ) = O describes a null
surface] and hence

g Z %68V Z,(x,6L)=0. (1.4)

At fixed x°, as £, varies, Z, sweeps out the null cone.
The idea is then to construct the (conformal) g*° at each point
from knowledge of all the vectors Z , at that point. By apply-
ing the differential operators® & and 3 several times to Eq.
(1.4) enough equations are obtained so that the metric can be
written explicitly (up to conformal factor) in terms of the
gradient basis

Z,382, 82, 33Z,. (1.5)

The resulting expression, though long and complicated,
shows that g, can be obtained from knowledge of the appro-
priate Z (x°,£,C ) and therefore we can write

8as(X) = 4o (Z ). (1.6)
It is geometrically obvious that Z determines the conformal
structure of M; for the light cones of two points in M are in
contact (along a common generator) if the points are null
separated, and this occurs if the two corresponding cuts of ¥
are tangent at some point.

The question which naturally arises now is what hap-
pens if an arbitrary Z (x°,£,¢ ) is used in Eq. (1.6) for the
construction of g,,, rather than the “appropriately” chosen
one. In general, the result would be a “metric” which would
depend on ¢ and £ as well as x°. However, by demanding that
38., = 08, = 0, conditions are imposed on Z(x*,¢. ,C )sothat
the resulting g, will depend only on x° and therefore will be
a metric for M.

For flat space and Schwarzschild space, the Z is known
explicitly,s'6 and the conditions are, of course, satisfied iden-
tically. In the case of self-dual (or anti-self-dual) vacuum
space-times, our Z reduces to the Z arising in the theory of
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H-space,” and hence a relatively simple differential equation
exists for the determination of the Z, namely,

8Z = 04(Z,LE). (1.7)

The remarkable fact is that this is an equation for the
global cross section of a line bundle over S, and at first sight
there is no connection between Eq. (1.7) and space-time or
the Einstein equations.

In fact,® the general (global) solution depends on four
complex parameters x? i.e., the solution space is four (com-
plex) dimensional. [This is analogous to X = 0=>x = at + b
with a two-dimensional (a,b ) solution space.] This solution
space is identified with (complex) space-time, and hence the
solutions can be written as u = Z (x°,{,¢ ). Furthermore, the
metric obtained from the Z identically satisfies the vacuum
Einstein equations, i.e., Eq. (1.7) yields both a manifold and a
self-dual vacuum Einstein metric.

The question now is can Eq. (1.7) be generalized to a
new equation for Z whose solution space is four-dimensional
and, furthermore, which would yield, by our construction, a
real metric at x°. Could this equation be further specialized
to yield the real vacuum Einstein equations?

To try to answer these questions, consider an ‘“‘appro-
priate” Z (x°,£,C ). This Z can always be thought of as solu-
tions of the following pair of differential equations:

8°Z =A(ZDZIZ3ZLE), OZ=A. (1.8)

"I_'_o see this, we point out that if Z is known so are 3,87,
and 337, and hence we can write

x° = x%(Z,8Z,3Z,03Z,(, ); (1.9)

thus from 3°Z being a known function of x°,£,& we can pro-
duce Eq. (1.8). Conversely, if the “appropriate”
A(Z,82,62Z, 652,§ ,Z’) is given, then the general solution of
Eq. (1.8) admits a four-parameter freedom and hence we ob-
tain an appropriate Z (x°,¢,¢ ). The “appropriateness” condi-
tions on Z turn out to be most easily stated as conditions on
A.

What remains is to chose a form for A so that Eq. (1.8)is
equivalent to vacuum Einstein equations and includes H-
space, Eq. (1.7), as a particular case.

We will argue in Sec. I1I that the required equation has
the form

3Z = aB(Z’§’Z) — Oz,

e~ "~
0°Z =0y —0g,

(1.10a)
(1.10b)

where o is to be a “universal” nonlinear functional of Z and
o p is the free data of the problem. A perturbation scheme for
obtaining Z in the weak field limit is presented, and a conjec-
ture is given for the explicit form of 0.

II. KINEMATICS OF THE CUTS
A. Definition of cuts

Since by assumption M is an asymptotically flat space-
time,” it satisfies M = Mu.s, where M is the physical mani-
fold and .# is the boundary constructed from the completion
of the future directed null geodesics of M.

This manifold M is provided with a pair (g, 42 ) defined
up to an equivalence relation; g, is a smooth, symmetric
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tensor field with Lorentzian signature; {2 is a smooth, non-
vanishing scalar field except on the boundary (at .#, 2 = 0,
12, #0,8"°02 02, = 0) and the equivalence relation is given
by

(8ar (2 )~ (8 ap M2 '}E o = a)zgaln 0N'=o0
for all smooth, nonvanishing . Although g, is defined up
to a conformal factor, we can construct fields out of it which
are well defined and have important physical meaning. Such
examples are Weyl tensor, News tensor (which describe gra-
vitational radiation), etc.

Another well-defined concept is the knowledge of null
geodesics of M which (in principle) can be obtained by inte-
grating the null geodesic equation. With the null geodesics
we can then construct the null cones NV, with apex x°. It is
known that NV_ is a surface-forming collection of points, and
that locally (except for conjugate points) N, can be immersed
in a family of null hypersurfaces.

Finally we define the light cone cut C,, the basic field of
our formalism, as C,=N_n#"_. It can be shown, using the
properties of null geodesics, that if M is singularity-free, then
C, = C, iff x* = x"? so each cut can be labeled unambi-
guously with the parameter x“.

[Notice that if the apex x° is at .#, then C, degenerates
into a line, i.e., C, coincides with one integral line of
n°=g**(2 ,. Although this situation has been studied in (the
complex) H-space, we have not investigated it yet, and for
the time being we will restrict the domain of x° to M. In this
way we will obtain cuts that locally are cross sections of .#.]

As we pointed out in the Introduction, if we attach a
Bondi coordinate system (u,&,E ) to #, we can describe C,,
locally by the equation

u=2ZxEL) (2.1)
We summarize here the three different ways Z (x,,¢ ) can
be thought of:

(i) For fixed x° Eq. (2.1) describes a piece of the cut C, ;
therefore, varying x°, we obtain a family of cuts {parame-
trized with x?).

(ii) Z (x°,¢,C ) can also be thought of as a function on the
bundle of null directions at the point x¢, with £, of .# para-
metrizing the null directions.

(iii) For fixed (u,£,£ ), the points x° that satisfy Eq. (2.1)
form the past null cone from a point of .#.

According to (iii} Z , is a null vector, and therefore it obeys

g MZ,(x,6.8)Z,x,5.8) =0. (2.2)
Notice that, by fixing x* and varying (£,& ),Z , sweeps the
tangent null cone of x° (or rather a piece of it since Z is only
locally defined), and this in turn enables us to construct a

conformal metric for M [which, of course, is our original
Za5(x)]. (See Secs. IIB and IIC.)

B. Metric construction technique

It is clear from these considerations that the (confor-
mal) metricg,, (x) and Z (x;{,¢ ) should be regarded as equally
important fields in the sense that knowledge of the metric
allows the construction of the cuts and conversely know-
ledge of Z allows the construction of g, (x).
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Before showing the explicit construction® we may ask
can an arbitrary Z (x°,£, ) give rise to a metric g, (x)? As we
will see, the answer is no. Therefore, the cuts belong to a
certain class of functions Z (x*,¢,Z ) (capable of producing
local fields) in a manifold M. We want to identify this parti-
cular class.

To put the question in an appropriate context, assume
we have a manifold M = Mu# without metric and a collec-
tion of arbitrary functions Z (x°,{,C ). We ask if it is possible
to define a nonvanishing, symmetric tensor field ¢** (x) that
satisfies

4 (X)Z . (x.$,$)Z 4 (x,6,{ ) = 0. (2.3)

Clearly the answer in general is no; there are an infinite
number of conditions imposed on the ten components of g*°.
Therefore, we ask what are the conditions to be imposed on
Z such that a nontrivial g°° with signature (+ — — —)or
{+ + — —)exists?

Two types of equations arise in the search for these con-
ditions. The first type actually yield the components of the
metric (these equations are denoted by (M.i), i = 1,2,.-/) while
the second type [denoted by (C.i)] identify necessary condi-
tions to be satisfied by Z or more precisely by 3°Z.

In order to simplify the notation, we introduce a basis
0., (i tetrad index (0, +, — ,1), a tensor index) defined in
terms of Z as follows:

=2, 6 =032, 6, =382, 0! =38Z,.
(2.4)

(We assume, of course, that for some range of £,¢ these form
a linearly independent set.) In terms of this basis we define
the metric components ¢’=¢**6: 8-,.

The basic idea is now to apply 3 and & to g°® and demand
8¢°® = 3¢°® = 0. Technically, it turns out to be easier to ap-
ply this to ¢”. (Note that 8¢” and dq” are not zero since the
are {,{-dependent.) In particular, since Eq. (2.3) reads (with
the new notation)

4°0°6°=¢" = 0. (M.1)
We obtain by applying 3 and 3 to ¢*° (using 8¢°® = 0),

G*Z, 3Z, = ¢*6°0 F =¢°*+ =0, (M.2)

q*Z, 8Z, = ¢**0°0 , =¢°~ =0. (M.3)

Now, by operating on (M.2) with & or (M.3) with &, we obtain

gt /¢ = — 1. (M.4)

In this way the trivial coefficients have been exhausted,
and new d and & operations provide the six other compo-
nents plus the conditions we are looking for.

We want to stress the importance of 3*Z {and 8°Z }since
this complex function allows us to determine the remaining
components and conditions.

Defining A (x*,§,5 )==0°Z and denoting A , = 4,6,
we obtain by applying 8 to (M.2)

g6, +6, 67 )=0o0r Ag°+g** =0.
Since the only nonvanishing ¢® is ¢°', we obtain

q++/q01 — _Al‘

Similarly operating with 8 on (M.3), we obtain

(M.5)
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q" /¢ = — A, (M.6)

If we now operate with 3 and & on (M.5) and (M.6), we
obtain four independent equations for ¢*' and g~ !. There-
fore, two equations must be identities among the A,’s. After
solving this system, we obtain

g+l/q" = —J(3A, + A, W), (M.7)

q_l/qm = - %(6;{1 +/_11W): (M.3)
and

A, =W— AW+ 3A, +3InP), (C.1)

A, =W —YA,W+3A, +3InP) (C.2)
with

P=(1—AA)"", W=(0A, —2A4_)/A,+38nP.

In obtaining (M.7), (M.8), (C.1), and (C.2), we have used
3°'=3(q"0,09)=q""' +¢™0236, =q*' + ¢*02 34,
=g*+' 4 ¢°'11,, where the coefficient /7, (a tetrad compo-
nent of 3A,,) is defined in terms of A, and 3, & of A; (the
explicit form is given in Appendix A). Therefore, we now
have a differential equation for ¢°'. After using conditions
(C.1) and (C.2), it simplifies to

3lng® =W, (M.9a)

dlng” =W, (M.9b)
from which ¢°' can be obtained. (One can check, using
824 = 3%A and after a long calculation, that the integrability
condition of Egs. (M.9) is identically satisfied.) Notice that
q°' is obtained only up to a conformal factor, i.e., if ¢°' satis-
fies (M.9) so does g°'¢®'™. This, however, is the conformal
freedom we expected.

Finally, taking & on (M.7) or & on {M.8), we obtain

q11 _ qiinAj — 5q+1 + aq—l + 65q°’ _ 2‘]01,
and, since the rest of g’ have been already obtained, we can
algebraically solve this equation for ¢'' and denote it by

"V /¢" = — 2e(AgA A ), E=E. (M.10)
The explicit form of ¢ is long and is not important at this
point (see Appendix A).

The last conditions come from operating with § and &
on (M.10)
e + (W — 2IT)) + (1 — YT, )3A, + A, W)
— 64, + AWMT_ +11,=0, (C.3)
c.c. (C.4)

The object we have constructed, ¢*° = ¢%6 {0}, satisfies

3¢°® = 3¢*® = 0 (see Sec. IIC). It therefore is a local metric
determined from Z.

Finally, if we want a metric with Lorentzian signature
we have to impose det(g*®) < 0=(det g”)det(6 76 ;
< 0=det(g") > 0 since it can be shown that, for a gradient
basis with 8367 real vectors and 6, ,0°. = 8°, complex
vectors, det(f?) is always a pure imaginary number. There-
fore, we obtain

det(g”) = (¢°')'P>0
or [using P=(1 — A,4,)7!]

P04, < 1. (C.5)
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From now on the metric whose components are given by
(M.1)-(M.10) and satisfy conditions (C.1)}~(C.5) will be de-
noted by g*.

As we menEioned in the Introduction, we can always
think of Z (x°,£,£ ) as coming from the solution of

FZ=4(6'¢E)

FZ=A0LE) (2.5b)
with 8 = (Z,6Z,5Z,6§Z) fori =0, +, —,1, respectively.

In this way M = MU.# should be regarded as the mani-
fold of solutions of Egs. (2.5). The conditions (C.1)~(C.5) to
be imposed on Z (x°,£,£ ) in order to produce a local field
g°(x)are now stated in terms of derivatives of A with respect
to 8'and (£,£ ). Note that, in this sense, the most natural way

to present our “appropriate Z (x°,£,C )” is as the solution of
Eq. (2.5) with A that satisfies conditions (C.1)—{C.5).

(2.5a)

C. Alternative approach

In this subsection we want to investigate an alternative
approach to the construction of a metric g, (x).

By assumption Z will be the general (four-parameter)
solution of equations

3Z=A(ZDZ,3Z33ZLE), (2.5a")

3Z=A(ZDZIZIBZLE), (2.5b")
where A is a given complex function that satisfies identically

FA =34 (2.6)
[namely, the integrability condition of Egs. (2.5)].

Defining

6°=2Z, 60+=8Z, 6~ =3Z, 0' =332, (2.7)

we can transform Egs. (2.5) into a system of first-order differ-
ential equations

6 0 { 0 +
3 o = A \ (2.8a)
6~ 6’
6! \BA —20+
0 _
{3\ {5
4 o- 1= i (2.8b)
6! \571 —20-
or, more compactly,
30 =A4167¢,5), (2.9a)
30'=A0°L.E). (2.9b)
The integrability conditions now read
34'—347=2s,0" (no sum over i), (2.10)

where s, is the spin weight of 8. We can easily check that the
only nontrivial equation is precisely Eq. (2.6).
Since by assumption the solution is of the form

u=Zx¢5L) a=1234, (2.11)
we have as well
0'=0'x"%5). (2.12)

We will assume the solution space (i.e., the collection of
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all points x°) forms a differentiable manifold, denoted by M.

Notice that we have a natural form basis 6 ; =6, living
in M, where , means the derivative with respect to x*. From
Egs. (2.9) we see that 8 satisfies

80, =4,
36, =4%,
or expanding 4 /, in terms of this basis
30, =461, {2.13a)
30, =4:67, (2.13b)

where 4 =34 /367, A /=04 '/36/.
Let us now define a symmetric tensor g*° {eventually to
be our metric tensor) as follows:

qab que ‘-‘9 &

vy

(2.14)
where 87 is the dual basis (i.e., 8207, = &§)) and ¢” are arbi-
trary functions of (x*,£,& ) interpreted as the scalar product
between 6 and &/,

Since in general ¢*° will depend on x* and & £, we raise
the question, what are the conditions to be imposed on ¢* so
that ¢*° = ¢°* (x)?

We thus want a tensor ¢° such that

3¢°* =0, 3¢ =0.

By applying & and 3 to Eq. (2.14), we easily see that this is
equivalent to the demand that the coefficients ¢” satisfy

g7 = 24 U g%, (2.15a)
Jg” =24 g, (2.15b)
where 4,4 § are defined in Egs. (2.13).

Before studying the solutions to Egs. (2.15), we first in-
vestigate its integrability conditions. They are

34 Lg™) — (4 Lg™) =s,q" (nosumoniyj),  (2.16)
where s, is the spin weight of ¢”. After a brief calculation we
rewrite Eq. (2.16) as

[Bal+A54%)—BAYL +4541)]¢" =s,4" (2.17)
This is precisely what we get from integrability conditions
(2.10) if we take its gradient, multiply by g**6/,, symmetrize
overiand j, and uses; =s; +5;. We thus see that Eq. (2.16)
is identically satisfied by virtue of the original integrability
conditions Eq. (2.10).

Solutions of Egs. (2.15}) thus do exist. It would be of
interest to investigate the general solution of Egs. (2.15) since
this may lead to a generalization of our approach. However,
(as we saw earlier in Sec. IIB) we are interested in the particu-
lar class of solution such that

g0269 = ¢* =0. (2.18)

Therefore, we will solve Egs. (2.15) only for our special case
(¢°° = 0) and defer the investigation of the general solution
for the future.

We want to obtain the conditionson A thatcharacterize
this class. They will arise by explicitly solving Eqs. (2.15).

Since g% is given we can put this information on the left
side of Egs. (2.15) and solve algebraically for the ¢”’s on the
right (the explicit form of 4 ;,A4 | is given in Appendix A).
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Thus,
0 = 3¢™ = 24°* {q°+ =0 (2.19)
0=23¢%= 2q°‘] ¢~ =0. (2.20)
Since we now know ¢°*, ¢°~, we repeat the same construc-
tion outlined above to obtain

0=08¢" =¢** +¢"4, g/ =—A4, @221
0=3"=¢ " +44, [=1¢ /" =-4 (222
0=38""=8¢""=¢*" +¢") lg" /" =-1 (223

Repeating the same argument for 3¢ *, 3¢ *, 3¢°', 3¢°",
dg~ ~, 8q ~, we obtain a differential equation for ¢°' and
four independent algebraic equations for g™ ' and ¢~ '. This
leads to two conditions among the A;’s. We write the solu-
tions and conditions as

gt /g% = — 184, + A, W), (2.24)
g7 V/¢" = — (34, + A, W), (2.25)
A, =W —{AW+3A,+3InP), (2.26)
A, =W—(A,W+34,+3nP), (2.27)

withP=(1 — A, A,)", W=(34, — 24 _)/A, + 3 In P.The

differential equation for ¢°' reads
dlng”' =W,
3lng® =W,

from which ¢°! can be obtained.
[As we have already proved, 3 W = d W because Eq.

(2.16) is satisfied; therefore a solution of Egs. (2.28) exists.]
Finally, from d¢* ! we obtain

5q+1 ___qn +ﬁ'_qi+‘

{2.28a}
(2.28b)

(2.29)

Since the other ¢”’s have been already obtained, we can alge-
braically solve for ¢''. We can check, after a long but
straightforward calculation, that

_q+iﬁi =08q" ' —q I, = —2eq°,

(2.30)
where ¢ is defined in Eq. {M.10). Moreover, using ¢*' of Eq.
(2.30) in the equation for 8(g* ') and c.c., we find they are
identicaily satisfied.

The final two equations for 3¢’ and 3¢'' lead to the
further conditions on the A;:

6 ql 1 — qli H,- ,

gq“ — qliﬁ“
which are identical to (C.3) and (C.4)

As we have shown in this subsection, we can duplicate
the results of Sec. IIB. However, the starting approaches for
obtaining the results were quite different.

In Sec. IIB we began with a function of six variablesina
manifold M with boundary S 2 X R whereas in Sec. IIC we
started with a differential equation for the local cross section
of a line bundle over S 2.

As we will see in Sec. II1 we will follow the lines of the
later approach to provide field equations for Z.

qll :5q+l

(2.31)
(2.32)

D. Some examples

As we have shovzn in Sec. IIB, we can distinguish the
“appropriate Z (x,£,{),” i.e., the class of cuts that produce
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local metrics, as those who satisfy conditions (C.1)~(C.5). We
now want to present some known members of this class of Z.

For Minkowski space and Schwarzschild space the cuts
can be constructed explicitly by integrating the null geodesic
equation, constructing the cones and finding their intersec-
tion with .7, Since the cuts in these cases are coming from a
metric, the conditions (C. 1)-(C.5) must be satisfied identical-
ly.

The Schwarzschild case has been analyzed in detail by
Joshi ez al.,* and will be presented elsewhere.

In Minkowski space the intersection of null cones with
# can be described by the function™®

u=Z"x6E) = x5S, (2.33a)
where

L=(1+ L&+ GIE — V2, — 1+ £E)/ Py,

Py =4(1 4+ £C), (2.33b)

is defined from the spherical harmonics
Yoo,Y1m, m= 10, — 1. Since §°Yy, = 3Y,,, =0, then
Z M satisfies

FZM=§Z" =0 (2.34)

and therefore A ™ = 0 for this particular case. The basis 8
has the form

0° =1, 0, =dl, 67 =3l 0! =3a3l,.

For fixed (£,£ ), 8, is the conventional parallelly propagated
null tetrad /,,m,,/m,, and n, — I, respectively. Since
A™M =0, the conditions (C.1)—(C.5) are trivially satisfied and
the only nonvanishing components of (M.1}-({M.10) are
g+ —/gOI — 1, gll/g()l = -2 with gOI =G)Z(X);
{2.35)

therefore, we obtain the usual expression of the (conformal)
Minkowski metric in tetrad language

8ab = 2("2(1(a”b) — mmy,). (2.36)

Our last example is the cuts Z ¥ arising from the theory
of H-space.” In order to check that Z ¥ belongs to our class,
we have to generalize slightly our formalism. This is done by
complexifying (&, }—(£,£ ); therefore, (8,5)—(3,8),

(A,A }—(A,A ), real functions—spin weight zero complex
functions,* etc. It is easy to check that all our equations still
hold after this procedure.

In H-space theory Z “ satisfies the following differential
equation:

BZH =05(Z" L8,

where 03, is an arbitrary function of three variables and A
is not given. This is an equation for the global cross section of
a line bundle over S 2. The general regular solution admits a
four (complex) parameter freedom and hence

ZH = ZH(x°£,E). In this context the manifold M arises as
the space of solutions x°.

Since Eq. (2.37) plus global regularity conditions deter-
mine Z 7 A ¥ is then defined by A 7 =032Z *. However, we
can drop global conditions and demand that Z # satisfy the
following pair of local equations:

{2.37)
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¥ZH=0y(Z"5 L),

] _ ) ] ) (2.38)

OFZH = AMZMBZ " 2" 357 HEL).
Since Z ¥ produces a local metric, we know that conditions
(C. 1)~(C.4) are identically satisfied. Nevertheless, we would
like to see what equations are produced from applying (C.1)-
{C.4) t0 (2.38).

Since A ¥ = 05(Z,(,£), then A, =A_=A, =0,
Ay = 5. Defining 2.7 =A | to match the notation in the
theory of H-space,” we find

0=Wdg" =0, W=08F =4 _, (C.1")
A, = —3F, (C.2')
3F =46, 8F + 236, — 2 80, (C.3)

3(Ag+ 05 F 2 —LF BF + J8F P +188F —3F)=0
A0 =3F — 6,5 +\FEF — YaF ) — 1387,
(C.4)
which are well-known identities from H-space theory.'® We
have thus elucidated the role of these equations as being re-
quired to produce a local {H-space) metric.
Following the procedure described earlier, we have

g’ =0, (M.1")
g =0, (M.2)
g =0, (M.3)
gt = —1, (M.4')
gt =0, (M.5")
g =0, (M.6)
g T = —2%, (M.7)
g = — 87, (M.8"
g'' = =2l — Fop + 15F). (M.9)

Equations (M.1')-(M.9¥’) give precisely the components of the
metric of H-space and (C.1)-(C.4) assure 3¢” = 3¢¥ = 0.”'°
We want to emphasize that this metric automatically
satisfies the vacuum Einstein equations ,i.e., Eq. 2.37}is the
vacuum Einstein equations for self-dual Weyl tensors.”

11l. FIELD EQUATIONS FOR THE CUTS

Although the class of cuts defined by the solution of Eq.
{2.5), where A satisfies conditions (C.1}—{C.5), allows us to
define metrics in the manifold of solutions M, in general the
metrics g, (x) will not satisfy Einstein vacuum equations.
Therefore, our next step should be to choose a form for A so
that Eq. (2.5) is equivalent to Einstein equations.

In order to obtain a geometric understanding of A, we
will recall results originally obtained by Sachs'' regarding
the asymptotic shear of null surfaces near.# *. (In Appendix
B we offer an alternative proof of the theorem using the
available intrinsic structure at £ .)

Assume that one has a Bondi slicing of # ™ (with asso-
ciated coordinates {#,£,{ } and an asymptotic shear o (#,4,4 )
for the associated Bondi null surfaces; then the asymptotic
shear of any other cut of # * [given by u = a({, }] is ob-
tained from
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Oy (§,Z') =0p (a(g,Z)’g,Z) - 62(1(§,Z')
or
8a =oyall)—o,. (3.1)

If we now identify the cut u = (¢,£ ) with members of
the family of light cone cuts, Eq. (3.1) takes the form

8Z =0,(ZLE)— 05 (3.2)

From Egs. (2.5) and (3.2) we see that A can be interpret-
ed [for each light cone (l.c.) cut Z (x%,£,€ )] as the difference
between the Bondi shear and the shear associated with the
Lec. cut.

The idea now, to construct field equations for Z, is to
treat o,(u,&,C ) as free characteristic data and to try to write
o, as some “universal” functional of Z with the result that
Eq. (3.2} is a nonlinear differential equation for Z. As we said
before, in this equation no mention whatsoever is made of
the manifold——the equation is for local cross sections of a
line bundle over S 2. The solution space x* defines the mani-
fold while the solutions themselves, Z (x*,¢,€ ), determine the
metric on the manifold.

The last question to be answered is how can o, be writ-
ten as a “‘universal” functional of Z. We would like to pres-
ent (i) an argument for the construction of ¢, using the four-
dimensional geometry and (ii) a conjecture for the explicit
form of o, as a function of Z,3Z,3Z, and 33Z.

(i) If we consider Z to be a known “appropriate” func-
tion of x°, then the local metric, connection, and curvature
tensor can be written as functionals of Z. In particular, we
could write the optical parameters p and o'* associated with
each light cone (with apex x°) as functions of Z. In terms of
these parameters, we can write the geodesic deviation equa-

tion for a null cone as'**?
Dp=p*+ 07+ ¢, (3.3)
Do = 2po + ¢, , (3.4)
where
o=MM*V L, p=M°M*V L,, (3.5)
$o0 = IRWL°L ’, Yo = Copeal ‘M *LM*, (3.6)
L°=g*L,, D=L, L, =L, (3.7)

[the null cone is given by L (x°x%) = 0],

and M is a complex vector lying on the cone that satisfies
MM, =0,M°M, = — 1.

The choice M °n, =0,L°n, =1 (n, =0, )at £+
guarantees o and o pick the same conformal factor under
rescaling of n°.

Finally by integrating Eqs. (3.3) and (3.4) we would ob-
tain the asymptotic o as a function of Z. The Einstein equa-
tions go into the choice of @, if for example, ¢y, = O or if
conformally equivalent to zero, we would have the vacuum
equations.

Though the idea described here to determine A is more
a program than an exact theory, we, nevertheless, feel it is
essentially correct. However, we do not yet know how to
carry out this program explicitly. Thus, instead of trying to
derive the full expression for o,, our next step will be to
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define a perturbation scheme for small 0. Notice that if
og =0, then Z* of Eq. (2.6) is a solution of Eq. (3.2) and
o, = 0 for this case. Therefore, if we multiply the free data
oy by a strength factor € and consider situations for which
€<1, we can implement a perturbation procedure for Z in
powers of €. We write

Z=2Zy+€Z,+ €Z, + -,

o =0,+ €0, + €0, + -, (3.8)
p=potep+€p,+ -,

Cavea = €Clapeg + 4

§=5y+ €5 + €5, + -, (3.9)

¢O = €¢0, + 621/]02 -+ -, etc.
Order 0: Solving Eqs. (3.3) and (3.4) for Minkowski
space, wefind o, =0, py = — 1/s,

0°Z,=0=Zy=2ZM =x,. (3.10)
Order €: With Z,, we construct 7, ; from the Bianchi

identities,'* we obtain C ., as a function of x® and 0,. We
now solve Egs. (3.3) and (3.4) for o, and p:

Dp, =2p,p,, (3.11)

Do, = 2p40, + toy, (3.12)
from which we obtain p, = 0, o, = (1/53)§5(s" %0, ds’.

Finally 0, =lim, __ €(s}c,) = ef& (51, ds'
=e€0,(Z,). Therefore, we write

0°Z, = Og (Zo»g’g_;) — oy(Zy), (3.13)
and, solving for Z,, we obtain the first nontrivial approxima-
tion

yA .=Zo+eZ,, (3.14)
from which (applying the procedure described in Sec. II) the
metric can be obtained:

8ab = Nap + €h [, (3.15)
Following a similar procedure as the one outlined above, we
can find the higher order terms of Z. In this way Z can be
obtained without the explicit knowledge of o,.

(ii) We would like now to present a conjecture for the

explicit choice of the function ¢,. Its proof (or disproof) is
for the future.

Beginning with H-space [H-space] theory, we recall
that solutions of equation

OFZH =gy (ZHLE)s (3.16a)

[3°Z% =G,(Z7LE)] (3.16b)
yield a Z #(x*,¢,€) [Z #(x*,£,E )] such that the resulting
metric satisfies the vacuum Einstein equations and has a
Weyl tensor which is self-dual [anti-self-dual], i.e., is an H-
space [H-space]. Assuming a solution of (3.16a) [(3.16b)] of
the form Z H=2ZH"x" (L) [ZH = ...], we can calculate
8°Z ¥ and eliminate the x* via Z ",6Z #,3Z ¥, §3Z ¥, yield-

ing

FZH= —GHZHdZH3ZH B8Z 1 ¢E) (3.17a)
and similarly
[8°ZH= — o*ZHB3ZF,..]. (3.17b)
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The point to be emphasized is that * [0*] is a uniquely
determined function of Z ¥,8Z % 3Z ¥, and 88Z ¥ obtained
from o,. Our conjecture now is that

0,(2,8Z,8Z,33Z,(.L )=0* (3.18a)

[G, =5*]; (3.18b)
thus our conjectured vacuum Einstein equations are

8Z = 04Z,LE) — oMZOZBZ,BBZ,L,E), (3.19a)

3Z =54(Z,LL) — THZ,BZ,BZ,IBZ,LL). (3.19b)

Several nice (required) features of (3.19) are (1) they satisfy
the integrability conditions identically, (2) if either o5 or g,
were zero they would produce either Z = Z, or Z = Z5,
and (3) if we consider the linearized version of (3.19), i.e.,
where we substitute on the right side of (3.19) the flat space
Z=2Z,=x,theresultingZ=2,+2,,Z, =Z¥+Z7
yields automatically the linearized vacuum solutions of the
Einstein equations. This is easily seen to be a consequence of
the fact we are simply superposing linearized self-dual and
anti-self-dual metrics.

IV. CONCLUSION

To conclude this work, we would like to make a few
comments intended to clarify our point of view and to ex-
press its connection with other works.

(1) Though we hope that sometime in the future we will
be able to produce an equation for Z, i.e., the explicit form
for o in

8Z — 04(Z4E) = — 02,

which would include properties of sources obtained from a
stress tensor, our point of view for the present is much more
modest. We wish to find the form for o, only for the pure
vacuum case, in which case it will be completely determined
by the characteristic data on future (or past) null infinities,
namely the Bondi shear, o (u,£,¢ ). The type of solutions we
envisage are those analogous to the pure radiation (i.e., half
retarded minus half advanced) solutions of the Maxwell
equations. These solutions are completely determined by
their characteristic data on .# *. (There is a formulation of
both Maxwell and Yang—-Mills theory completely analogous
to our present formulation of general relativity.’)

(2) We also wish to point out the work we have discussed
here is very much connected with the twistor program of
Penrose.'® The main point of contact appears to be the fact
that the cut function Z can be expressed as the envelope of
twistor lines in complexified .#. The connection appears in
particular to be intimately associated with the so called
*“googly™ graviton construction.

(3) As our final comment, we would like to say that one
of our original motivations for this work (and the similar
work for gauge theories®) was to try to formulate a (nonlin-
ear) classical scattering theory, so that data given on .# ~
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could be (somehow) directly translated into dataon . *. An
immediate desire having been to find the relationship
between the two “Hilbert spaces” of .# © and .# ~ in the
Ashtekar approach to quantum gravity.'® A secondary mo-
tivation, which was much more nebulous, was to find a new
variable for general relativity that was fundamentally asso-
ciated with light cones for use in quantum gravity. The idea
here is that quantum gravity should in some fashion “smear
out” light cones. Z seems to be in some sense an ideal vari-
able for this purpose. It certainly remains to be seen if we will
be successful on any of these long range goals.

APPENDIX A

We want to derive here several of the formulae used
earlier in the paper. Expanding A , [A from Eq. (2.5)] in the
basis 8, we obtain

A =AB° +A,0,) +A_0, +A0,=A,0.,

' (A1)

A, =A00 +A, 0, +A 0, + A,0.=A0".

| (A2)
We now wish to obtain the expansion of dA, and c.c. in
terms of A, and A,. Operating with don A,, don A,, we
obtain

5Aa :(8A0+A7Z0)92 + (5/11 +A. +Z|A7)0£11
+@A, +A_A_)O,}
+(BA_ 4+ Ag—2A,+A,A )0, + A,04,

and c.c.

Solving this pair of equations (note the 8A, on right side) for
dA, and dA,, we can write the solution as

3A,/P =(p+ApP) +(6+ABI6,

+(B+A8)0, +m+ATE, (A3)

and c.c. (Ad)
with P=(1 — A,A,)" ' and

n=0A,+A, +AA_, (A5)

p= 5AO+A,/_1(,, {A6)

5=03A,+A, A, (A7)

B=Ay+08A_—2A,+A_ A _. (A8)

Using Eqs. (A3)-(A8), we define IT,,11, the tetrad compo-
nents of 34 , and 64, by

3A, =11,0",
oA, =11,0'.

(A9)
(A10)

(Notice 7, = IT, fori =0,1and T, =11 _,II_ =11 . The
same rule applies for A; and A,.) The coefficients A,,4,,

IT,,IT, are used to define the nontrivial components of 4 /,4 |
[Eq. (2.15)], namely
A?:51'+’ Ai+ =4,
(Alla)
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A7 =6, 4! =01 -25",
Z?:(Si*) Zi+ :5117
(A1lb)
Zi_ =;{ia le zﬁz —25.
Finally the explicit form of ¢'' [Eq. (M.10)] is given by
q"'/¢" = —2[1 —Re(4p4)]/(1 — 4,4))

{ —Re[d(34, +A1_W)
+ @A+ AT+ AA, +4,A )
124 A A+ A A, +A_A_N/(1 - AA)AL12)

APPENDIX B

We want to give here an alternative proof of Eq. (3.1)
using the intrinsic geometry of & *.

We first summarize the intrinsic structure of .# .

(i) Since the restriction n° of n° = g*°2 , to . is com-
plete and the manifold of orbits of n® is diffeomorphic to S ?,
# is a trivial bundle with base space S ? and fiber R.

(ii) The restriction g,, is a degenerate metric with
g, V¢ = 0iff ¥’an®; therefore, g,, = IT*(h,,), where IT * is
the lift operation to .# and A, is the metric of S *.

(iii) It is useful to introduce the tetrad fields of .# in the
following way:

(a) Choose an arbitrary cross section of .#, then slide it up
and down by the integral curves of n°. This yields cross sec-
tions u = const such that .%" u = 1 or defining 1, =u , we
have n°l, = 1. (b) Introduce a complex vector field m” tan-
gent to the cross sections such that ZL,m* =0, mm, =0,
m°m, = — 1 with m, = g, m®. Coordinatizing the cross
sections with £,&, we canset m, = (2P )~ '¢,,

m® = 2P 3/3E, 8. = £ uls)/P2 With P=P({,L). Then
(n®,m°,i°) and (l,,m_m,) constitute the tetrad fields of .#".

(iv) Finally it can be shown'’ that the intrinsic connec-
tion D, can be completely described if we giveits actiononl,
and m,:

D,l, =ogm,m, +oym,m, + 1g,,¥

=0, + 18,y withop = 05u,6.8),
D,m, = IT*D,#,), where D, is the connection of 52
and h,, = Zr?z(a r%,,,.

We now present the geometric objects we are interested

in. Assume we introduce a cross section on .# which is local-

ly described by ' = 0. Since «' is not unique, we want to
obtain a canonical choice. If we use coordinates (©,£,£ ), then
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the cross section is characterized by the equation u = a(£,£ );
therefore, the canonical #' is given by ¥'=u — a({,{ ) and

U =0ou =altl) (B1)
Denoting by u. the gradient of #’, we can easily see
D,u, =D,, - D,D,a (B2)

or, taking the trace-free part of this equation, we obtain at
u' =0

(D, D), — igo, DD Ja = 0j, — 0%, (B2)

where o, isthe trace-free part of D, u;, or D, I, and is usually
called the shear tensor associated with each cut. Multiplying
by m°m’ (and m“m°) and defining o, = m°m°D, u; (and c.c.),
we get

m’m°D,D,a = oy — 0, (and c.c.). (B3)

Since @ = a(¢,£ ), then by defining the 3,3 operators in
the usual way we obtain the known result!!

3a = oyla,t,C) — 0, (and c.c.). (B4)

'R. Penrose, Battelle Recontres, edited by B. de Witt and J. A. Wheeler
(Benjamin, New York, 1968), p. 121.

IR. Geroch, Asymptotic Structure of Space-Time, edited by P. Esposito and
L. Witten (Plenum, New York, 1976).

*H. Bondi, Proc. Roy. Soc. (London) A 269, 21 (1962).

‘E. T. Newman and R. Penrose, J. Math. Phys. 14, 874 (1973).

’S. L. Kent and E. T. Newman, J. Math. Phys. 24, 549 {1983).

SP. Joshi, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 24, 2490
(1983).

M. Ko, M. Ludvigsen, E. T. Newman, and K. P. Tod, “The Theory of H-
space,” Phys. Rep. 71, 53 (1981).

%R. Hansen, E. T. Newman, R. Penrose, and K. P. Tod, Proc. Roy. Soc.
(London} A 363, 445 (1978).

°Another reconstruction technique can be found in F. A. Pirani and A.
Schild, Perspectives in Geometry and Relativity, edited by B. Hoffman
(Indiana U. P., Bloomington, 1966), p. 291.

%M. Ko, E. T. Newman, and K. P. Tod, Asymptotic Structure of Space-
Time edited by P. Esposito and L. Witten (Plenum, New York, 1976).

'R, K. Sachs, Proc. Roy. Soc. (London) 270, 103 (1962).

'?R. K. Sachs, Proc. Roy. Soc. (London) A 264, 309 (1961).

13S. Hawking and G. Ellis, The Large Scale Structure of Space-Time (Cam-
bridge U. P., Cambridge, 1973).

“The gauge freedom in the solution of the Bianchi identities is fixed by
allowing only half advanced minus half retarded solutions.

SR, Penrose and M. A. McCallum, “Twistor Theory,” Phys. Rep. 6, 242
(1973).

'®Abhay Ashtekar, J. Math. Phys. 22, 2885 (1981).

""C. N. Kozameh and E. T. Newman, Gen. Rel. Grav. 15, 475 (1983).

C. N. Kozameh and E. T. Newman 2489



Light cone cuts of null infinity in Schwarzschild geometry®

P. 8. Joshi, C. N. Kozameh, and E. T. Newman

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 1 March 1983; accepted for publication 3 June 1983)

Light cone cuts of future null infinity in Schwarzschild geometry are studied here. The future null
cone from an arbitrary apex in the space-time has been constructed, and its intersection with.# *
is obtained. Knowledge of the cuts yields a great deal of information about the interior of the
space-time. In particular, we use it to reconstruct the Schwarzschild metric up to a conformal

factor.

PACS numbers: 04.20. — q, 04.30. + x

I. INTRODUCTION

The purpose of this paper is twofold. Working with
Schwarzschild geometry we are first of all interested in con-
structing (by integrating the null geodesic equations) the (fu-
ture) null cones N, from arbitrary space-time points x° and
in particular in finding the intersections C, of these cones
with future null infinity, i.e., C, = N_.n.# *. These inter-
sections or light cone cuts of .# * are (locally) 2-surfaces,
which are uniquely labeled by the apex of the cone, 1.e., x“. If
Bondi coordinates (u,§,Z‘ ) are used to coordinatize 4 *, the
cuts can be given in the form u = Z (x°,{,¢ ). It is clear that
knowledge of the set of all these cuts yields a great deal of
information about the interior of the space-time. In particu-
lar, for the second purpose, we will show that from the
Z (x°£,E ) one can reconstruct the Schwarzschild metric up
to a conformal factor. This result is a particular example of a
general theory of light cone cuts for asymptotically flat
space-times which has recently been developed.'

In Sec. II we give a brief review of the general theory of
extracting the metric from the Z (x°,£,¢ ). In Sec. III the null
geodesic equations are integrated and the cut function
u = Z (x°,£,€ ) is obtained. Unfortunately, the function is
sufficiently complicated so that it must be given parametri-
cally and in terms of elliptic integrals. In Sec. IV we discuss
the reconstruction of the Schwarzschild metric from the Z
while in Sec. V we describe several examples of other infor-
mation that can be extracted from the Z.

Il. THEORY OF LIGHT CONE CUTS

Given an asymptotically flat space” M with (conformal)
metric g,, and null boundary # *, we can (in principle)
integrate the null geodesic equations and obtain all the null
geodesics in M.

In particular, we can construct the null cone N, with
apex x°. N_ is a collection of points that, except for conjugate
points, is surface-forming when considered locally.

N, can also be described by the equation

L (x°x"%) =0, (2.1)
where x“ is the apex of the cone and x'“ are points on the null

surface. [Notice that fixing x'“ the set of points x that satisfy
Eq. (2.1) form the null cone emanating from x'“].

*'Supported by NSF Grant PHY800823.
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We now define the light conecut C, as C, =N _n.# *.
In terms of the function L, the cuts are described by

L (x% x'%) =0, (2.2)
where we use the notation x'“ when x? is constrained to lie
on.Js *.

Locally the light cone cuts will be 2-surfaces and there-

fore if Bondi coordinates® (#,£, ) are used to coordinatize
# * we can solve for « in Eq. (2.2) and write locally

u=27Z(x%E) (2.3)
We can think of Z (x*,£,£ ) in three different ways

(i) For fixed x°, Eq. (2.3) describes the cut C,; therefore,
varying x°, we obtain a four-parameter familty of cuts.

(i) Z (x“,,§ ) can also be thought of as a function on the
bundle of null directions at points x* of M, with §, { of & *+
parametrizing the null 9irections.

(i) For fixed (#,£,£ ) on # * the points x° that satisfy
Eq. (2.3) form the past null cone from a point of & *.

According to the third statement, Z ,(x,{,{ ) is a null
vector, and therefore it obeys

g XZ,x86)Z,x6.8) = 0. (2.4)

Notice that for fixed x° if we vary (£,€), Z , sweeps the
tangent null cone of x% and this in turn enables us to con-
struct a metric conformally related to g *°.

Our reconstruction technique consists in applying the
different operators® 8 and 8 several times to Eq. (2.4) until
enough equations are obtained so that the metric can be writ-
ten explicitly in terms of the gradient basis
Z,07Z,06Z,00Z,.

In order to simplify the notation we define 8, [i tetrad
index (0, +, —, 1) a tensor index] as follows:

6°=2z, 6, =90Z, 60, =3Z, 6!=03Z,.

(2.5)
In terms of this basis we define the tetrad components of the
metric

g'=¢g"0.0}.

Equation (2.4) reads in this new notation
gubegg(z —_ g()() =0Q. (26)

Applying 8 and 3 to g*°, we obtain
geo6, =g’ =0, (2.7)
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800, =g~ =0. (2.8)
Operating on {2.7) with 3 or (2.8) with 8, we obtain
gr /g = -1 (2.9)

In this way the trivial components of g “° have been obtained.
New & and 3 operations will provide the six other compo-
nents we are looking for.

We want to stress the importance of 3°Z (and c.c.)since
this complex function alone allows us to determine the re-
maining g *’s. First we expand 8°Z , in terms of 6 | as

0Z,=Af°+A, 0 +A_0,7 +A0\=A0".
(2.10)

[We emphasize that if Z is known, then so are 8°Z , and 8,
and hence (2.10) leads to an algebraic determination of the
Al

We then write the following set of equations:

Z°8Z, = —gt+ =g"A,, (2.11)

3Z°8Z, =8g**)=g" A, +gt " A_+g A,
(2.12)
52(16220 - _ a(g()l) _g+l
=g " TA,+g8 TA_+gt'A, (2.13)
and c.c.

The right side of these equations are just the contrac-
tions of (2.10) with Z“,8Z “, and 8Z  whereas the center is
obtained from the extreme left by commuting 8 derivatives
and using g°+* =g°~ =0and 8g** = 0.

Equation (2.11) and its conjugate yield g* */g°* and
g~ /g"'. Now by inserting (2.11) and c.c. into (2.12), (2.13),
and c.c. we obtain a set of four algebraic equations from
which g*'/g", g~ '/g%', 8g°'/g°!, and 8g°'/g°' can be ob-
tained.

_ The last component g''/g"' could be derived from
38Z °8°Z,. However, it is simpler to obtain it from
8Z © 8°Z,,. By multiplying (2.10) with its conjugate and
some manipulation, we obtain
AR A
=g+ 28 — [3(g"") + 8(g ") + 33( &™)
=g"f'AiZj, (2.14)

wich,- =/_1, fori=20, 1,Z+ =A_,and A_ =/_1+. Since
the remaining components have been obtained, we can alge-
braically solve for g''/g°'. We would like at this point to
make two comments.

(i} The explicit form of g°! is irrelevant since we are
looking for a conformal metric, that is, for fixed (¢, ),g°"!
becomes an overall conformal factor.

(ii) There is a one-to-one algebraic relationship between
(178" g+, 87 ,e " g7 ' 8", 8¢, 8g°")=¢ , and
(ApApA A A A A, + AgA)=A,, via Egs. (2.11)-
(2.14). This correspondence can be used in two ways: (a) to
obtain ¢ 7if 4, is known as it is our case or (b) to obtain A, if
gY is the data. This property will be used in Sec. IV.

The coordinate components of the metric are now ob-
tained from g ** = g %6 76 ¥ with g/ of (2.6)~(2.14) and ¢ sa-
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tisfying 629, = 8 ¢. [Notice that if we fix (£,£ ), 8/, is an
ordinary coordinate basis.]

lIl. ASYMPTOTIC CUT DESCRIPTION FOR
SCHWARZSCHILD GEOMETRY

Schwarzschild space-time is among the simplest nontri-
vial asymptotically flat solutions to Einstein’s equations. It
was therefore natural to begin the study of light cone cuts
with this example. Using the known Schwarzschild metric,
knowledge of all null geodesics of the space-time can be ob-
tained. This provides a complete description of the light cone
from an arbitrary apex in the space-time. The intersection of
this cone with .# * generates the light cone cut. The nontri-
vial feature represented by the light cones in this geometry,
as compared to flat space, is the angular deflection of null
rays because of the curvature. As a result, the cut function Z
in this geometry is described by rather complicated elliptic
integrals and must be given parametrically as opposed to the
elementary functions obtained in the case of a flat space-
time.

Before considering the Schwarzschild situation in de-
tail, we will discuss briefly the light cone cuts of infinity in
flat space-times. This permits special insights into the situa-
tion by virtue of its simplicity and clarity.

Throughout our discussion (for both the flat and
Schwarzschild cases) we shall use the null polar coordinates
(1, ), where ¢ and £ are complex stereographic coordi-
nates on the sphere defined by £ = e cot(@ /2). Let x* be the
Minkowskian coordinates (¢,x,p,2) for an arbitrary apex, then
the null cone about x* can be described as

u = u(x5,6.r), (3.1)
which, in the limit as »— o0 becomes
u=2ZHx¢8) (3.2)

To work out Z for the flat space-time situation, we rewrite
the usual Minkowskian metric with signature
(+,—,—,— )in the null polar coordinates (u,7,£,¢ ) [Note
that when a two-point function, e.g., (3.2) is used the interior
points are denoted with u,76,¢0,Co):

ds’ =du* 4+ 2dudr—r % , (3.3a)

0
where u = ¢ — 7 is the retarded time and P, = (1 + £€)/2.
We shall introduce here new coordinates’
w=(1/\2u, r=\2r (3.3b)

which are more convenient for the study of asymptotic struc-
ture. Then (3.3a) can be written as

ds? = 2du® + 2 du dr—%rzﬁ, (3.3¢)

Pg
where we have suppressed the primes. Since null geodesics

are conformally invariant, there is an inherent conformal
freedom available and we shall transform (3.3¢) to

d"2=.!22ds2=412du2—4dud1—M, (3.4)
P
where we have introduced a new coordinate / = ! and the
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conformal factor has been chosen to be 2 = 2/. Working
out the geodesic equations of the space-time, we have (with
the dot denoting derivative with respect to s, the affine pa-
rameter),

2% —1=1,
i+ 1t =0,
C(1+¢E) 282 =0, (3.5)
C+68) -2 =0,
417> — 44l — £ /P2 =0,
where the last equation corresponds to ds? = 0. Restricting

ourselves momentarily to the equatorial plane 8 = 7/2 for
the sake of simplicity, (3.5) can be written as

2% —1=1, (3.6a)
i+l =0, (3.6b)
=0, ¢=>b, (3.6¢)
1% — 4l =g =b?/4. (3.6d)

We shall now eliminate the parameter s from above. For

that, substituting (3.6a) in (3.6d) and then solving both these
2 l 2

equations for u gives /2 =1 — b2/ i.e,,
I= +J1 =077, (3.7a)
ds= +dl /N T—b77. (3.7b)

{ It should be noted that / < 0 corresponds to a null ray mov-
ing away from the origin [/ = — (1/7%)¢]. Next, if /> Oinitial-
ly, then the ray moves initially towards the origin of the
coordinate system (» = 0, / = o) and after reaching a mini-
mum r,, (i.e., /= /1 — 522 = 0) it begins to move out-
wards and again / < 0. For the sake of definiteness we shall
choose here rays such that initially / < 0; however, by consid-
ering the other sheet 1> 0 as well, we can span the full light
cone of null rays from our starting point. We shall return to
this point later. }

Next, using (3.6a) and (3.7a), and (3.7b), we can write

d! dl

du= - —3 4 (3.7)
AT =77 2
and, from (3.6¢) and (3.7b), we have
dp— ——2d_ (3.7d)

JI—=b717
If the apex of the cone is at / = Iy, u = uy, ¢ = @, inte-
grating (3.7c) and (3.7d) from [, to an arbitrary / gives the
equations for (one sheet of) the light cone as

1 dl 1 ('dl

U—tg= — — | ————— -, (3.82)
2 0, 1231077 2yl
!

p—po= | —=24L_ (3.8b)
o T — 5717

where b (the initial direction) ranges from Oto/; '. For the
sake of simplicity we choose the apex on the ¢ = 0 axis, i.e.,
&, = 0. Now by taking the limit as the null rays escape to

infinity, i.e., /-0, (3.8a) and (3.8b) provide us with a portion
of the cut at infinity of the rays coming from u,/,,4,. [At the
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moment we are describing only the rays in the equatorial
plane.] Integration of (3.8) from /; to 0 yields

1 -1 —033
u—ug=—o>__ - 0 (3.9)
2/,
and

(3.10)

Note that for fixed apex (3.10) yields a one-to-one relation
between the initial direction b and the final angular position
¢$ on.# *. By eliminating b from (3.9) and (3.10), we obtain
the portion (equatorial plane) of the light cone cut,

u=uy+ (1/20)(1 — cos ). (3.11)

We emphasize (for later use) that had (3.9) and (3.10) been
functionally more complicated, we might have to consider
them as defining (3.11) parametrically. (Note that for the
sheet / < 0 which we have been considering, cos ¢ will be
positive because ¢ will always be in the first or fourth quad-
rant in this situation. For the other sheet corresponding to
!> 0 initially, cos ¢ will be negative.)

The portion of Z given by (3.10) describes, as we have
mentioned, only an S ' worth of null rays intersecting .# *,
since we have restricted ourselves to the equatorial plane.
However, because of spherical symmetry the full cut, which
is topologically 52, can be generated by rotating this plane.

For that, first it will be convenient to define a null vec-
tor ! [for all values of the stereographic coordinates (£, )]
given by

@ = arcsin(bl,).

o (£ g o)
2\ 1488 1+80 1+68
As (£,£) more over S'2, [ sweeps out the null cone of direc-
tions.

The situation we have considered is that of all null geo-
desics in the equatorial plane with apex on the ¢ = 0 axis.
Now consider two unit vectors at the origin, one pointing to
the apex and the other to the “final point” of the geodesic,
ie,n, =(1,0,0), #r =(cos d,sin ¢,0). We have 7, -7,

= cos ¢. If now we perform an arbitrary rigid rotation so
that the apex is moved to a new direction

(3.12)

n!y = (sin 6,08 @,, sin &, sin @g,cos 6;) (3.13a)
and the final point to
ny = (sin & cos @,sin 8 sin g,cos §), (3.13b)

v 2

then we have A ,-Ap = 7} ‘A or

cos& = cos 6, cos O + sin G, sin 8 cos(@ — @), (3.14a)
where we have now used éﬁ to designate the angle between 7i,,
and 7. Using stereographic coordinates (§,{ ) and (£,,5,) in-

stead of the 6 and ¢ ’s and (3.12), we have [using

(sin @ cos g,sin & sin @,cos )
=(§+Z_ i€ —¢) §Z—1)]
1+06 1466 1+66
cosd=1—2°, (3.14b)
where 7a is the same as (3.12) but with (&,,&,) instead of (£,€ ).
Substituting this back in (3.11) yields
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1. . - =
u=uy+ 1—(1 L) = Z (Uolps$0:50:556 )s (3.15)
0
the general equation for the light cone cut for Minkowski
space where the apex has coordinates (#,/4,$0:$ ).
If one chooses to use Minkowski coordinales x? which
are related to the null polar coordinates (u,7,5,5 ) by

%= ugt® + rol Lol (3.16)

where ¢ ? is a constant vector with ¢, =2 and ¢t°/, =1,
then the light cone cut (3.15) can also be written as

u=x9065)

a well-known result.’

Having considered the flat space-time situation, we
now return to Schwarzschild geometry.

The Schwarzschild metric in (#,7,6,¢ ) coordinates,
where u = t — r — 2mlog(r — 2m) is the retarded time, is
given as
ds® = (1 — 2m/ridu® + 2 du dr — P(d0* + sin*6 dp ?).

(3.18)
As before, we make coordinate transformations (3.3b), use
stereographic coordinates ¢,¢, and conformally transform
the metric by 2 = r~! = 2/ which gives

d8? =N2%ds® = 4(1* — 2\2ml% du* — 4 du dl

_dody . (3.19)
P2
The new coordinate / is now finite at infinity and # * is
described by the hypersurface / = 0, which corresponds to
r = oo for (3.18).
The Lagrangian for the geodesics is written as

& =212 — 22mi*i* — 2ul — EE /2P2, (3.20)

where dot denotes differentiation w.r.t. an affine parameter s
along null geodesics. The equations for null geodesics are
then given as:

(3.17)

202 —22mi% — 1 =1, (3.21a)
i+ 2( — 32mi%u =0, (3.21b)
E(L 4+ EE) =282 =0, (3.21¢)
L +6E)—2£E2 =0, (3.21d)
417 — 2\2ml¥i? — il — (E /P2 =0, (3.21¢)

where (3.21e) corresponds to ds* = 0. Though, in principle,
all the null geodesics of the space-time are obtained from
(3.21), we begin our investigation with those in the equatorial
plane @ = 7/2. From a fixed apex this yields an S ! worth of
geodesics. Now from these and the spherical symmetry of
the situation we will generate al// the null geodesics from an
arbitrary apex by a rigid rotation as was done in the Min-
kowski case. For 8 = /2 we have ¢ = ¢, and (3.21) be-
comes

212 —22ml %y — 1 =1, (3.22a)
it +2( — 3\2ml %2 =0, (3.22b)
$=0, ¢=b, (3.23)
(2 =2V2ml?i® — il = p* = b /4, (3.24)
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with (3.22b) an identity from the other equations. Combining
the first and last equations of above, the following relations
can be easily deduced:

1417

PR & L S (3.25a)
2(12 — 2\2ml3)
?___ i(2\/§mb213—b212+1)”2= i\/‘T’ (325b)
ds= + 9L (3.25¢)
JA
dp= + 29 (3.25d)
JA4

Before integrating (3.25), we note that the null rays
coming from an arbitrary apex are divided into two sets ({the
two sheets of 4 ) defined by (3.25b), i.e., those given initially
by 1<0and /> 0. For the first set, i.e., those initially with
1 <0, the geodesics continue with a decreasing / (increasing 7)
until intersection with /" ™. For the rays which begin with
/> 0 (the second set), i.e., those rays with initially increasing /
(decreasing #), some reach a maximum / (when 4 = 0), then
begin to move outwards, and eventually also intersect & *.
For others, depending on b, they continue towards increas-
ing / and eventually cross the horizon and donot reach .# ™.
We will not be concerned with the later rays.

For a fixed apex (say at / = I, < 1/3y2m) the null rays,
on each sheet, are characterized by the value of the impact
parameter b. For the first set, (/ < 0), the range of b is from
b = 0to a maximum, b,,, where the b,, is determined by

A=bL(22ml} —13)+1=0,ie.
b2 =1/(12 —22ml}). (3.26)

For the second sheet (/> 0), the range is again from some b,,
to b = O, but now there is a critical value b, such that for all
b < b, the rays continue past the horizon. To determine b_,
we want the smallest b so that 4 has a real positive root, /..
By plotting 4 against /it is easily calculated that /. is a double

rootand /. = 1/3\2m, withb, = 3/6m. Thus, on the second
sheet, our range for b is b, < b < b,,. Note that a ray begin-
ning at / = [, with b = b_ approaches asymptotically the
well-known (unstable) orbit / = /_.

We now restrict ourselves (for the time being) to the
family of null geodesics from first sheet. Then (3.25) can be

written as
= -4 b(1—V4) _ b2
A2 —22ml%)  A1—4) 2144
(3.27a)
= -4, (3.27b)
ds= — 9 (3.27¢)
A
ie.,
2
du= - b4 (3.27d)
2JA (1 +4)
Integration of (3.27d) then yields
! 32 ’ 4 2 '
u=u0—-l—f b dl + L b-dl = u(ug,ly,b,1 ).
2 ), J4 20144
(3.28)
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It should be noted that since 4 is a cubic, both the integrals
appearing on rhs of (3.28) are elliptic integrals, and they can
be reexpressed as combinations of the standard elliptic inte-
grals of first, second, or third types. This ellipticity is the
consequence of m#0 in 4. When m = 0, these become ele-
mentary integrals and (3.28) reduces to the flat-space situa-
tion (3.8).

Returning to the remaining geodesic equation (3.23)
with the aid of (3.27¢) and choosing the apex on ¢ = 0 axis,
we obtain

!
<p=f =54l i, 1b)
i JA

We can now, in (3.28) and (3.29), pass to the limit / =0
(r = o) obtaining

(3.29)

1] 2 ’
_ ___J"b dl i b7al' _ Ylugiyb),
I 1+\/_
(3.30a)
f LIy, (3.30b)

Equations (3.30) deﬁne implicitly (by eliminating b between
them) a function

u = u(tol, )s (3.31)

which yields a portion of the light cone cut of # * (the equa-
torial plane). However, because of the spherical symmetry of
the problem, the angle ¢ can be considered as the angle
between a vector pointing (from the origin) towards an arbi-
trary apex with angular position (£,,£,) and the final angular
position on £ *, (£,€). As in the Minkowski space case we
have (3.14b)

cos §=1— 20,65 ) ool (3.32)
Thus with (3.32), Eq. (3.31) has the form
= Z (o lpsb 0§ ) (3.33a)
and becomes the light cone cut function of .# * from
(u0’10v§09§0)'

Unfortunately, we cannot solve either (3.30a) or (3.30b)
explicitly for b, and we must give (3.33) parametrically as

iy 2 lo 2
u=uo+if bdl 1 (" bdl (3.33b)
o 14+J4
IO
p=arccos(1 — 21,1%) = bl (3.33¢)
o JA4

We now consider briefly the second sheet (/> 0 initial-
ly). The integration procedure is slightly more complicated
than in the / < O case. We must first integrate (3.25) and (3.23)
with the + A (for fixed ) to the “bounce” point
I, [A4 (I,) = 0] after which we return to the first sheet
(— VA ) and integrate to / = 0. Performing these operations,
we obtain the cut function for the second sheet:

u= Z(uor[o,goxg‘o,;f ), (3.34a)
or, parametrically,
1 (" _2b%dl J’o b2dl
U=u,+— - ,
2 ) Tdn—a) VA (1 +4)
(3.34b)
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" bdl b pdl

o A o JA
(3.34¢)
Though the equations of the cut function Z, i.e., (3.33)
or {3.34), appear to be very complicated, it will turn out (next
section) that they can be manipulated with relative ease and
that from them the Schwarzschild metric (up to conformal
factor) can be reconstructed.

$ =arccos(1 — 21,19 =2

IV. RECONSTRUCTION OF METRIC

In the previous section we obtained the light cone cut
function for Schwarzschild space-time, while in Sec. II we
gave the general description for the construction of the con-
formal metric from the light cone cut function. In principle,
we could stop at this point—the general theory is there as
well as a specific cut function, so the metric could be calcu-
lated. However, for two reasons we would like to show how
the calculation is done. First of all it will serve as a check on
both the general formalism and also on the correctness of our
derivation of the Schwarzschild Z. Second, it forces us to
compute certain explicit expressions that have intrinsic in-
terest on their own. These will be discussed in Sec. V.

Working with the first sheet, we begin with
Z = Z (uporlorlo;6rE ) (expressed parametrically) in Eq.
(3.33), and wish to obtain explicit expressions for the follow-
ing quantities which are needed for computation of the met-
ric;

Za = (Z,uoa Z Zgo)’ (413)
3z, 8z, aBz‘a, (4.1b)
3z, &Z,. (4.1c)

In addition (though these quantities are not needed for the
calculation of the metric) we wish to obtain, for later use,

3z, ¥Z. (4.1d)

Before beginning these calculations we first give some
notation and relationships from flat space tetrad calculus
which will be needed later. In addition to the vector /,(£,{ ),
Eq. (3.12), we have three related vectors® forming a tetrad
(for each value of £, £ ) namely

la = la (;’E )’

m, =0/,

5 =3l (4.2)
n, =1, +38l,,

where / and n have spin weights zero and m and m spin
weights 1 and — 1, respectively. They have nonvanishing
scalar products among themselves,

l'n, = —m°m, = 1.
The vectors satisfy the identities
dm® = dm° =0,
dm° = dm°* =n"—1°,
(4.3)

on= —m°,
3n = — m°
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Returning now to (4.1), we see immediately from (3.33) that

Z, =1 (4.4)
The calculation of Z,_is just a bit more tricky as u depends
explicitly on /, (upper limit of integration) and implicitly on

I, via b.
We thus have from (3.33b) that

Z,=8,Z+2Z,d,b,
b2 1 (°
] +3,b—
VA +A4li=4 2

By differentiating (3.33c) with respect to /,[(£,{,) = const],
we obtain

LAY

z, =1
b2 o A\A

»lo

lo
~b—] vab [ -2 =0 (4.6)
VA li-g o AJA
Substituting (4.6) into (4.5) and simplifying, we obtain
2
z,=—2 |, 4.7)
20 4+y4) i

In a similar fashion we calculate Z . and Z; with the result
that Z , is

Z, =1,

WHg

z, = —[6°2(1+V4)],,

Z, =bG /2l + £olo),
sz-o = ba /2(1 + ;050)5

where the G and G arose in the differentiation of the arccos in
(3.33c) and have the form

o- ()" (BBIE
lym® (& — Colll + 506
and GG = 1.
At this point we have an ideal check on the accuracy of
our expression for Z. If we calculate the norm of Z , in (4.8)
using the Schwarzschild metric (for either sheet), we obtain
the identity

g*Z ,Z , =0,

(4.10)

for all (£,¢'). This shows that, in the Schwarzschild space-
time, Z = const. is, for arbitrary (£, ), in fact a null surface
and that, at a fixed point (u,/,,¢ o), Z , describes the tan-
gent space null cone as (£, ) varies. Since knowledge of the
local cones determines the conformal metric,” we could stop
at (4.10).We nevertlleless continue to the next level.

By applying 8,8, and 83, respectively to (4.8), we obtain
the remaining tetrad vectors:

0z ,:
8Z,, =0,
dz, = —bdb/2J4, (4.11)
3z, = 3bG)/2L + &olo),
8Zz, = 8(bG)/2(1 + §obo),
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6z ,:
3z, =0,
3Z, = — bdb /24, (4.12)
8Z,, =3(bG )/2(1 + Sobo),
3Zz =8(bG)/2(1 + Lolo),
562,‘,:
38Z, =0,
38Z, = — (3b 3b -+ bA38b)/24 {4, (4.13)
38Z . = 33(bG)/21 + Lok,
38Zz = 088(bG)/2(1 + Lolo)-
The final quantity needed is 8°Z ,:
3z, =0,
3Z, = —((8b) + bA3*b)/24 4,
(4.14)

8Z,, = 8(6G )/2(1 + Sobo),

&Zz, = 86G )/2(1 + Sobol
and its complex conjugate 8°Z .

As we discussed in Sec. 11, the basic quantities needed to
obtain the metric from the Z, are the four A, A, A _, and
A, defined by

3Z,=AZ,+A,8Z, +A_0BZ,+ A, 33Z,.

Now by using {4.8), (4.11), (4.12), (4.13), (4.14), and several
identities involving the tetrad vectors /, m, m, n g_enerated by
(4.9) and by applying the & and 8 operator to GG = 1, we
calculate the A,’s (a long, tedious calculation) and obtain

Ay=0, A,=B,/B,,
A_ = (8% 8G — 8b 8°G /B,

+ B,(3b 838G — 3G 33b)/B,B,

+ [6%3b(8G)* — b248b (3G ) + b (8b )*GBG

— G¥8b)’)/bB,, (4.15b)
A, =(3b38°G — 8* 8G)/B,

— B,(3b 383G — 3G 88b)/B,B,

—(b3b3b GG —G>3b(8b) + b2 3b 3G 3G

(4.15a)

— b%4 3b (3G )*/bB,, (4.15¢)
where
B, =G*3b) —b°4(8G),
B,=G?3b3db — b4 3G3G, (4.15d)

B, = 8b 8G — 3b 3G,

From the A,’s we could, via Egs. (2.11)~(2. 14} and con-
Jugates, reconstruct the tetrad components of the Schwarzs-
child metric, namely, g/ = g*°9, 6, and then the g**. It actu-
ally turns out to be simpler (since we are only verifying that
our method yields the already known Schwarzschild metric)
to begin with the known g°® and calculate the g ¥ with the use
of the tetrad 6. From the same set, Egs. (2.11)+2.14) we can
calculate the 4,, and compare with (4.15) and thereby verify
the reconstruction of the g*.
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We have in fact carried out this calculation which is
relatively long but straightforward. The details shed no new
light. However, for completeness we present the g ¥

g()() =g0+ =g07 — O, (4163)
- R
go,:abab n b 6666’ (4.16b)
44 4
2 2 -
g++:_(6b) QbéGaG’ (4.16¢)
44 4
b A—=1. o= 3683 1 5.5 am
= 8b )*(db) — — —0a(b* 3G aG),
g 14 >(0b)7(3b) A 3 ( )
(4.16d)
v A=y 84 ba 336 — 1386613365
46243 4 '
(4.16e)
and rest of the components are given by
gl=g, gt = —g" g =g . (416

V. DISCUSSION

In this final section we would like to discuss a series of
different items, all connected to the main theme of the paper,
some intimately connected, others much more loosely.

(1) We would like to return to a question that was just
touched upon in Sec. I1I, namely, the integration of the null
geodesic equations for a particular value of the impact pa-
rameter b = b, = /6-3m. We pointed out then that these
rays can be thought of (i) on the first sheet as if they had come
from the unstable orbit / = 1/3y2m moving towards .# *
while (ii) for the second sheet they would represent rays mov-
ing towards the same unstable orbit and eventually remain-
ing at / = 1/3\2m. A point of interest for us is that the ellip-
tic integrals that appear in Sec. 11 for this case reduce to
elementary integrals [the polynomial 4 (/) factors in this case
so that A4 = 54m?*(l — 1/32m)* (2\2m! + 1/3)]. Because of
this (on sheet I) one can, for specific directions, obtain explic-
it expressions for Z and @. We have not bothered to evaluate
them.

A second point (concerning sheet II) also related to
b = b, is that one can exactly integrate (3.25d) from /, to

1 =1/32m — €, €>0, with the result
2(1 — 3\2ml,) l
em[32ml, + 32y2mi, + 1/3)"% 4 2]
(5.1)

Thus for fixed /, the geodesic will have an arbitrarily large
deflection (or number of rotations) as e 0. In a similar man-
ner, if b = 3/6m + & (8 small but positive), a ray from

I = I, < 1/3{2m will come close to [ = 1/32m but
“bounce” and move towards .# *. Againin this case onecan
easily approximate the integrals and study analytically the
multiple encirclements of the black hole.

(2) Quantities that have intrigued us but for which we
have not yet found a simple geometric interpretation are the
(multiple) periods of the elliptic integrals involved in the eva-
luation of both u and ¢, in (3.38) or (3.34). Presumably a

¢ =log
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related question is the meaning of the analytic continuation
of the integrals into the complex b-plane. They seem to have
a relationship to the analytic continuation of Schwarzschild
geometry to its Euclidean version and to Hawking radiation
effects.®

Related also is the inversion of the integrals so that one
has elliptic functions instead of elliptic integrals. This can be
clearly done for the ¢ integral, but we have not succeeded in
doing so for the u integral.

(3) If we now return to Eqgs. (3.33) or (3.34) and apply the
d and 8 operators several times (now without taking the gra-
dient), we obtain (for the first sheet)

8Z = 3G + G 3b, (5.2)

88Z = b 386G + G 3b, (5.3a)

3Z = bG, (5.3b)

3Z = bG, (5.3¢)

Z= Z(“0’107§0a§0,§’§ ), {3.33a’)
where G is given as

oo [ =51 +560) (5.3d)

(€ = Sl +Euf)

[The relationship between G defined by {4.9) and G above
should be noted. Whereas G arises from taking 8, 0f (3.32), G
arises by taking 0 of the same expression.]

Since the right hand side of (5.2) is a function of
(orlonCono)s as are the right sides of (5.3), we could view (5.2)
as an equation of the form

3°Z = —0,(Z,82,8Z,88Z,(.C), (5.4)

but given parametrically by (5.2) and (5.3). Equations (5.4)
and their conjugates can be considered as the “Einstein
equations” for the Schwarzschild geometry in the following
sense: They appear to have a unique four-parameter set of
solutions given by (3.33}, where the solution space itself, i.e.,
(torlpsEorEo) defines the Schwarzschild manifold and the solu-
tions themselves yield the Schwarzschild metric.

The quantity o, or (from a slightly simpler point of
view) the right side of (5.2) has a simple geometric meaning,
namely, it is the asymptotic shear of the null cone with apex
(torl0E0rCo)- This is seen from the Sachs theorem® on the
transformations of asymptotic shear and the fact that the
Bondi shear for Schwarzschild space-time is zero.

(4) A further interesting piece of technical information
is obtainable from (5.3c) and (5.2). We have wondered what
would be the consequences of choosing a null goedesic begin-
ning at (u0,l,¢0,Co) Which possesses a conjugate point at
4 *, on the local geometry of Z in the neighborhood of the
conjugate point. This can be investigated by choosing the
origin of the ray in the equitorial plane 6§ = 7/2 on the line
& = 0, then it is easy to see from the symmetry of the situa-
tion that there will exist a geodesic such that the point on
& * along the negative x axis, i.e., § = 7/2 and ¢ = 7 will
be a conjugate point. Notice that from (5.3c) we have

8Z = bG = bE/E, (5.5)

where we have used (6, = 7/2, ¢, = O)—(£o,Co) = 0. If we
now have { + {— oo (for -7, the antipodal point to the
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positive x axis), we have the result that 8Z = be”?, where
¢ =|¢|e ", ie.,thevalueof Z depends noton thefinal (£,¢)
but on the direction of approach to the final point. The be-
havior of the surface defined by u = Z (x°,{,{ ) near the con-
jugate point is thus like a cusp. From this we see that 8°Z at
the conjugate point is singular and hence the asymptotic
shear o, at a conjugate point is singular. This result givesus a
general warning that our construction of metrics from the
cut function breaks down at conjugate points.

(5) It is shown in the general theory of light cone cuts'
that a necessary condition for Lorentzian signature of the
metric is

P '=1—4A,A1,>0. (5.6)
If we calculate (5.6) for Schwarzschild geometry, we obtain
a A6 \2
P“=b2A(6baG 6b_66)’ (5.7)
G G

which is greater than zero for null rays that can escape to
infinity.

(6) A question that remains to be considered is what is
the twistor description of the theory of light-cone cuts in
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general and in particular for the Schwarzschild geometry. It
is clear that for each x° or cut there is a two-parameter family
of twistor lines on C.# + whose envelope is the analytic con-
tinuation of the cut function into the complex .#” *. It should
be investigated whether this view allows a deeper and clearer
understanding of the cut function as it did in the special case
of # -space theory.
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All null orbit type D electrovac solutions with cosmological constant
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All null orbit type D solutions of the Einstein-Maxwell equations with A are obtained. There are
only two families of solutions depending upon whether the complex expansion of the
electromagnetic eigenvectors aligned along the double DP vectors is different or equal to zero;
they are the null orbit solution with complex expansion, and the five-parameter free of complex

expansion null orbit solution, respectively.

PACS numbers: 04.20.Jb

I.INTRODUCTION AND EQUATIONS OF THE PROBLEM

In 1981 Debever and McLenaghan' obtained, without
explicit integration, the general metric structures of space-
times V, which are solutions of the Einstein-Maxwell equa-
tions with 4,

Ruv - %gva + lg}tv =fpa f‘: - ‘l‘g,uv faﬂfaB’
fuv,v =0 :f[;w,a B
and which fulfill the following conditions.
(i) The Weyl tensor C,g,, is of Petrov type D, i.e., there

exist two real null principal directions, Debever—Penrose
(DP) vectors, / and #n such that, at each point of V,,

T Copip by = 0= 0¥ n*Copip 1y ).
(ii) The electromagnetic field tensor f,; is nonsingular
and its principal null directions are aligned along the DP

directions of the Weyl tensor

" — () = pH
I futalpy = 0=1"fiang ).

(iii) The invariants of the Weyl tensor and the tracefree

Ricci tensor C,,,: =R, — g, R satisfy one of the in-
equalities

Copur C P #£4C,, CH,
or

C 2 CH 0.

They established, among others results, a theorem which
applies to the & class of solutions, i.e., to solutions of the
Einstein—-Maxwell equations above satisfying conditions (i)-
(iii).

Theorem 1: Every solution in & admits at least a two-
parameter orthogonally transitive abelian isometry group. If
the orbits of the group are non-null, the group is invertible
and there exists a coordinate system (u, v, w, x) such that the
metric and the self-dual Maxwell field have the form

ds’ = — e(L du + M dv)* + eR *dw?*
+ e(Ndu + Pdv)* — eT?dx?,
F=B[R(Ldu+ MdvAdw
— eT (N du + Pdv)\dx], (T1)

# Also at Seccion de Graduados, Escuela Superior de Ingenieria Mecanica y
Eléctrica del Instituto Politécnico Nacional, México D.F., Mexico.
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where L, M, and R are real-valued functions, B is a complex-
valued function, and N, P, and T are functions satisfying

N= —eN,P= — eP, T = eT, where all these functions are
independent of the coordinates u and v, and where e = 1
(spacelike orbits) or e = — 1 (timelike orbits). If the orbits

are null, the group is not invertible and there exists a system
of coordinates (#, v, w, x) in which the metric and the self-
dual Maxwell field have the form

ds®> = 2R dw(L du + M dv)
— (Ndu + Pdv)? — T%dx?,
F=B[—R(Ldu+ Mdv\dw
4 iT(N du + Pdv) Adx], (T2)

where L, M, N, P, R, and T are real-valued functions and B is
a complex-valued function, all independent of the coordi-
nates u and v.

The main purpose of the present work is to give the
complete set of type D electrovac solutions with A possessing
an isometry group with null orbits. According to the
theorem above, in this case, the metric modified to signature

+ 2 and the 2-form of the electromagnetic field can be given
as

g = (Ndu+ Pdvy + T?dx*

+ 2R dy(L du + M dv),

= —(% +iZ){R(Ldu+ Mdv)\dy
+iT (N du + Pdv)A\dx}, (1.1)

v\v/here the real structural functions N, P, T, R, L, M, E, and
4 , constrained to the Einstein~-Maxwell field equations, are
allindependent of the Killingian variables  and v. The func-
tions & and 4 are the electromagnetic invariants defined by

F = S A o S = = N + BV

Working in the null tetrad formalism the metricg and w
from (1.1) can be given as

g=2e'®e’+ 206",

=% +iB)e' Ne* + e Ne?), (1.2)
where

e' =(1/V2(Ndu + Pdv + iTdx), & =(e"),
e =Rdy, e*=Ldu+ Mdv.
The congruences ¢* and ¢*, aligned along the double DP
directions, via the Sachs—Goldberg theorem (fulfillment of
(i)-(ii1), are geodesic and shearfree, i.e.,

(1.3)
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Fpa=Tp=0=1I3;3=">3,, (1.4)
where I',,. = I'|,; . are the components of the connection
l-forms I',, = I',, €, which are defined by the first Cartan
equations

de’ =e*AI°,. (1.5)

Under the present alignment of ¢® and ¢* along the DP
vectors, the only nonvanishing independent component of
the traceless Ricci tensor is

Co= — 87+ F?) (1.6)
the conformal curvature C,,, is characterized by the only
nonvanishing curvature quantity C®, and the curvature
constant R = — 44, A being the cosmological constant.

The second structure equations, into which the Einstein
equations with an aligned electromagnetic field are built in,
can be written as

o =dl+ TN+ Tay) = (%C(s) + i)’ Ael,

B =dls + (T + )Ny, = (%Cm +id)et Ael,

¢ =d(1“,2+1“34)+21“42£\r3,

— [C(3) . M - (gz + %2)]61A62
+[CO— U+ (B2 + BY]ENe (1.7)

The Maxwell equations of the problem studied are

dIn(€ + iB)V? 4 'y + Fipe?

—Iy0¢° — et =0. (1.8)
They simply state that the 2-form @ of the electromagnetic
field, formula (1.1) or (1.2}, is a closed form.

From Egs. (1.5), by substituting there e’ from (1.3}, one
readily reads the connection components I',,.. The compo-
nents /",,, and I',, are identically equal to zero. The compo-
nents I 4,, I'5,3, and I';,, amount to

Ty, = (i/2TZ)(P,N — PN,),

I3 =(1/V2RZ)M,L — L M), (1.9)

s, =(0/2R)[T,/T—(1/Z)\N,M —P,L}],
where Z: = NM — PL. The vanishing conditions of these
quantities, Egs. (1.4), yield
P=p(yIN, M=mx)L, T=f{x)N(m(x)—p(y). (1.10)
Thus without loss of generality, the metric (1.1) satisfying the
conditions (1.4] can be written as

g = N¥du + p( v}’ + N(m{x) — p(p)ff *(x)dx?

+ 2R dyldu + mix)dv), (1.11)
where NV and R are functions of x and y only, and m, f, and p
are functions of their arguments.

From the integrability condition of Maxwell equations
(1.8) two conditions arise.

(i) From the real part one infers

3.9,In—" o
N3(m — p)
consequently,
R = Y(x)p ()N *(m — p). (1.12)
By redefining the coordinates x and y, one can always set

¢ (y) = 1, and ¢(x) = f(x).

2499 J. Math. Phys., Vol. 24, No. 10, October 1983

(ii) The imaginary part leads to
ax m, _ ay Py =0,
m—p m—p

(1.13)

the integration of which is a straightforward process.
By introducing the definitions

H%x,y): =R, Kx): =f"1, (1.14)
one brings the metric (1.11) into the form
g=H‘2( K (du + p dv)*
m-—p
+%dx2+2dy(du+mdv)). (1.15)

The information contained in the second Cartan equa-
tion (1.6) can be summarized as follows: The vanishing of the
coefficients multiplying the 2-form e A e implies

from o: H, — 22T g g (1.16)
4 m-—p
from #: H, + 122 = pg_g (1.17)
4 m-p
H,—p H
from € : ny_me_yp_Y’_‘_=0, (1.18)
2 m—p

PyHy + m.xHx - i(mxx +Pyy)'H =0. (1'19)
Two out of the three equations with second derivatives of H
occur to be independent when p, and m, are not simuita-
neously equal to zero. This fact can be established by differ-
entiating (1.19) and the use of Eq. (1.13) together with its
third derivatives. Therefore under the condition imposed on
P, and m,, one can consider as independent equations for &
the ones given by (1.16), {1.17), and (1.19), remembering al-
ways the necessity of (1.13). If p, = 0 = m,, one arrives at
two different branches of solutions; the de Sitter space [see
below formulas (1.26), {1.30){1.32)] outside of the D’s solu-
tions, and the null orbit exceptional type D solution [see
further (3.12), which does not satisfy the (iii) condition].

The equation for the scalar curvature amounts to

—4i(m—p)=HK, —3K,0,H>+2K [ -4d.d,.H?
+2H _2(3,}12)2] =D K, (1.20)
which permits us to determine the function X once the m, p,

and H are known.
The curvature quantities C® and C,, are correspond-

ingly

2
co—_2,; 1 KH {3,9, In(m — p)H ~2
3 2 m—p
+ 19, In[(m — p\H ~*13, In K*H ~*{m — p)~!

+ 49, In(m — p)-d, [In(m — p)

+2ilnK(m —p)~?}, (1.21)
2 K
c, =L KH [_ Py 1 Ky
2 m—p m—-—p 2 K
Ko (), m ,]“22)
K\m-—p H —-p HI'
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In this way, the problem of finding all null orbit electro-
vac type D solutions satisfying (i){iv} reduces to integrating
the system, denoted subsequently by ., determined by Eq.
(1.13) (with m, and p, not vanishing simultaneously), (1.16),
(1.17), (1.19), and (1.20). The integrability of the Maxwell
equations (1.8), which now can be written as

dIn(% +iB)H ~Hm —p)—i

4 y m, dy — 0’
m—p m—p
is guaranteed by Eq. (1.13).

Before starting the integration of the quoted equations,
let us demonstrate a theorem:

Within the class of null orbit D’ solutions, if the con-
gruence ¢* is twist-free (Im Iy, = 0), then it is also nondi-
verging (Re I';,, = 0), and inversely.

Proof: The complex rotation of e* is given by

H
m-—p

dx + (1.23)

X

1 »p i
r =H(H +—-——y—H)+—
312 Y2 m—p 2

Let the divergence be zero, i.e.,
L
2 m—p

Differentiating the expression above with respect to y, and
substituting H,, from (1.17) into the obtained relation one
arrives, by virtue of (1.13), at

H=0.

H(m,)? =0, (1.25)
therefore m, =0, i.e., Im I'5;, =0.

Inversely, suppose that the twist of * is zero, i.e.,

m, = 0=>m = m, = const. (1.26)
Hence, from (1.13), one has

Py +(p,)/(mg —p) =0. (1.27)
Substituting p,, into (1.19), one obtains

py(Hy+%—"—z;D%;H)=0. (1.28)
Thus one has the two possibilities

0 H ++ -2 H=—05Rel,,=0 (1.29)

2 my—p

and

(i) p, = 0= p = p, = const. (1.30)
In this last branch, the equations for Hare H,, = H,, = H ,
= 0; therefore

H=a+bx+cy, (1.31)

where a, b, and c are constants. Entering with m, p, and H
into Egs. (1.24) and (1.20), one arrives at
RC F312 = C(a + bx + Cy),
—44 (mO —PO) = (a + bx + cy)szx
— 6bla + bx + cy)K, + 12b°K.
(1.32)

Hence if one demands Re s, to be different from zero, then
¢ is a nonvanishing constant. This, in turn, implies that K'isa
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constant structural function yielding, together with H, to the
de Sitter space with all curvature quantities equal to zero
except the scalar curvature R = — 44, and, therefore, out-
side of the studied class of type D solutions.

Thus the class of null orbit electrovac type D solutions
can be divided into two branches: the free of complex expan-
sion D’s and the D solutions with one DP vector possessing
simultaneously twist and divergence.

Incidentally, branch (ii) with I";;, = 0 is not empty. It
contains an exceptional null orbit type D solution; see For-
mula (3.12), and the static solution given by Egs. (3.9) and
(3.10) with / equal to zero.

il. INTEGRATION FOR ALL NULL ORBIT D SOLUTIONS
WITH COMPLEX EXPANSION

In this section, all solutions of the system . within the
class with nonvanishing I';,, are determined. They are ex-
hibited in a canonical system of coordinates together with
their curvature quantities referred to the null tetrad (1.3).

The starting point in the integration of %, provided
that m, #0, is Eq. (1.13). A trivial solution, corresponding to
a flat space, is obtained when p is a constant. Thus cases of
interest arise only if p, is also different from zero.

Equation (1.13), differentiated with respect to x and y,
leads to a separable equation

(2.1)

where a is a separation constant. Integrating the above rela-
tions, one arrives at

mxxx/mx = —a= “Pyyy/Py,

m,+am=8, p, —ap=y, (2.2)

where £ and ¥ are constants.

Two possible branches of solutions depending upon
whether a is different or equal to zero ought to be consid-
ered.

Case a = 0: The general solutions fulfilling Egs. (1.13)
and (2.2) are

m=(B/2x" + Kx + 13,

p=— (B2 +ep+e,
with constants £3, k;, and €, ({ = 1,2) constrained to

K3 — 2K, + € + 2 €, =0.

Thus with m, #0+#p,, the constant 8 has to be different
from zero.

Subjecting the coordinates in the metric (1.15) to the
transformation

{x, y, v, ul—{x — /B,y + €/B, (2/B ),

u — (/B + 2 Bevi,

without loss of generality, one can set

(2.3)

(2.4)
The equations for the function H, taking into account
(2.4), amount to
H,=H,=yH, —xH, =0.
Hence H has the general form
H=pu+vxy, (2.6)

where u and v are constants.

m=x> p= —y>

(2.5)
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Entering with the obtained H into the equation for X,
(1.20), one arrives at

— 44 (X" 4+ ) =+ vxpPK
— 6wyl + vxy)K, + 12v°K. (2.7)
By comparing coefficients to powers of y one obtains
— 40 = V(x’K,, — 6xK, + 12K),
0=pvixK,, —3K,), (2.8)
—4ix*=u’K,,.

The system above has two different solutions.

If the cosmological constant A is present, then both pa-
rameters  and v are different from zero. The structural
function X is then given by

K= — A3 x* +>v77). (2.9)
The metric(1.20) with m and p from (2.4), H from(2.6},and X
from (2.9), after a suitable scaling of coordinates, can be al-
ways written as
1 (— A3 +x
&= 2 2, 2
(1—xp) Xty
x2 + yZ
(—A/73)1 + x4
with A strictly negative to have the physical Minkowskian
signature (+ + + — ), A <0.
Maxwell equations (1.23) yield
dIn(% + iB)H Yy + ix)?
=0 % +i% = (e +ig/(y + ixP)1 — xp)
where e and g are real constants of integration. According to
(1.6), one has

Cin= — (& + &)1 —xp)/1x* + ),
which on the other hand, by virtue of (1.22), amounts to

C.— _ A A —xpf
12 3 (xz +y2)2 ’
therefore the real constants e, g, and A ought to fulfill
A/3)=e+ g

Consequently, the cosmological constant is to be positive,
A > 0! This contradiction implies that physically this kind of
solution does not exist. This formal “solution” was given in
Ref. 2; the misunderstanding arises from the wrong interpre-
tation of the equality (7.17) of Ref. 2 which does not hold for
real quantities.

If the cosmological constant is now equal to zero, one
obtains the null orbit D solution with complex expansion.
Equations (2.8) with A = O permit two possible solutions:

p#0=w: (2.12)

‘)
(du — y*dv)?

dx* + 2 dy(du + xzdv)],(2.10)

(2.11)

K=«4+ Kx,
and
L=0#v: K=kKex*+ x,x* (2.13)

where «;, and «, are integration constants.
The metric (1.20), with X from (2,12), can be written as

x2 2
g= +Jy

_ 2nx — (&2 + g%
2nx — (¢ + &) dx’+

x2 +y2
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X (du — y*dv)® + 2 dyldu + x*dv), (2.14)
Maxwell equations (1.23) imply
F +i% =le+igly+ix)? (2.15)

where e and g are real constants. Hence the 2-form o, which
accompanies the metric (2.14), amounts to

o= —(e+ ig)d[ L — (du + ixy dv)}. (2.16)
y+ix
The solution given by (2.14) and (2.16) is characterized by
CP= —2ni/(y+ ix) + 2 + &)/((y + ixJ( y — ix)),
C,= — (€@ +&Vy +x,
Ty, = — 1/(py+ix). (2.17)

The evaluation of these quantities can be carried out from
expressions (1.21), (1.22), or (1.6), and (1.24), respectively.
The parameters n, e, and g are interpretable as magnetic
mass (NUT parameter), electric and magnetic charges, re-
spectively.
The metric with X from (2.13) is reducible, by means of
the transformation

{x,p,uv}—{x"", —y~ 1+, vuj,

to the metric (2.14). The corresponding o is equivalent to the
one given by (2.16).

The metric structure (2.14) and (2.16) has been present-
ed in Ref. 1, Eq. (2.26), as the first known example of null
orbit electrovac type D solutions. It should be noted that this
solution is a special case of a solution obtained by Leroy®
[with b = 0 in Eq. (3.36) of Ref. 3] under different hypothe-
sis, and it also occurs as a special case of a solution obtained
by Debever* [with b = 0 in Eq. (2.12) of Ref. 4].

Case a #0: The general solutions satisfying Egs. (1.13)
and (2.2) are given by

m=A,e "+ 4,e V"4 B/a,

p=B,e™ + Be 4+ B/a, (2.18)
with the constants 4; and B, {{ = 1, 2) constrained to
A,4, — BB, =0. (2.19)

By subjecting the coordinates u and v to a translation when
m and p from (2.18) are substituted into the metric, the con-
stant B cancels out. Therefore one always can choose 3 equal
to zero.

With all generality, the constant a can be assumed posi-
tive, say, a = k*#0. (For a <0, the hyperbolic functions be-
low are to be replaced by the trigonometric one, and inverse-
ly.) From the reality of m,one has 4, = 4, and 4, = |4,|e",
where 7 is a real constant. Consequently,

m= ,Al,(ei;dx+ T/x) + e—ix(x+ T/K))’

changing the variable x to x — 7/« one obtains

m=2|d|cos kx, |4,|#0. (2.20)
To fulfill relation (2.19), it is sufficient to choose B, as
B, = |A4,|e°, B, =|A/|le” "

where o is a real constant. Substituting these constants B;
into p from (2.18), and transforming y to y — o/«, one ob-
tains
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(2.21)
Integrating the equations for the function H, one ar-
rives at the general solution
H =4 cos (k/2)x cosh (k/2) y
X {p + v tan{x/2)x tanh (x/2) y}, (2.22)

where ¢ and v are arbitrary real constants. This expression
suggests the change of variables

D =2|A,|cosh ky.

x’=tan (k/2)x, y' = tanh (x/2)y, (2.23)
under which the functions m, p, and H ? reduce to

m=2|4,|(1 —x?3)/(1 + x?),

=241 +y?)/(1 —y?),

H?=(16/(1 - y?)1 + x?){p + vx'y'}>. (2.24)

Substituting these expressions into the metric (1.20), and ex-
ecuting there the transformation (2.23), accompanied by the
redefinition of K and the coordinates # and v according to

|A 1| ' [ u’)
= — —LL K, u+24,lv==8k« \
K2(1 + x12)2 - | ll -,
dropping primes, one arrives at the metric
1 [ X 2,00 X4
= du + y*dv)* + —=—dx
g P x2+y2( ydv) X

+ 2 dyldu — xzdv)} (2.25)

with K (x) constrained to fulfill the same equation as for the
branch of solutions with vanishing separation constant. No-
tice also that the structural function H is the same in both
cases. Therefore having demonstrated the equivalence of
both cases, one concludes the only null orbit D solution with
complex expansion is that given by formulas (2.14) and
(2.16).

1. NULL ORBIT TYPE D SOLUTIONS WITH VANISHING
COMPLEX EXPANSION

For the sake of completeness, we would like to present
our previous results® dealing with divergenceless solutions
from the point of view of the present treatment.

The conditions under which the congruence e* is free of
complex expansion are

m,=0=H, +p,/im —p)H. (3.1)
Therefore being that m = m, = const, from Eq. (1.13), one
infers

p=my— pee”, (3.2)
where p, and « are constants different from zero.

The equations for H now reduce to

H, + (x/2H =0,

H,, — (k/2)H =0,

H, — (x/2)H =0,
the integration of which yields

H = &""cos (k/2)x( + v tan (k/2)x). (3.4)

Subjecting the coordinates in (1.20) to the transforma-
tion

(3.3)
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x'=ltan (k/2)x, y' =e” ",
U= — (1/kju + mpp), v = (2pyl /5y,
(' = pl), (3.5)
and redefining the structural function K according to
K' = (k*/41%p )I* + x"*V’K, (3.6)
one brings the metric (1.20), dropping primes, to the form
1 [ K (x) R
= dv + 2ly du —dx
& (4 vx)? 12+x2( y du) + K(x
+ 217 + x*\dy du], (3.7)
with K (x) constrained to
—4A(1P X)) = (u+ )Pk,
— 6vju + vx)K, + 12v°K. (3.8)

Notice that formulas (3.7) and (3.8) are meaningful even in
the case of / equal to zero.

The presence of a conformal factor in the metric (3.7)
suggests making a homographic transformation of the vari-
able x. In this way, one arrives at the metrical structure equi-
valent to the previous one, but now with v equal to zero.
Thus the general nondiverging and nontwisting null orbit
type D solutions are

K (x) , P+ X .,

= d 2lyd —d

[2+x2(v+ ly du)” + X X
+ 2(/% + x*)dy du,

Kx)=a+px—A{x*+21%%, (3.9)
where a and 3 are constants related to charges and magnetic
mass; @ = — (¢? + g°) + Al* and B = 2n. Theterm A/ *ina
is useful from the viewpoint of limiting transitions. The elec-
tromagnetic 2-form w accompanying (3.9) is

w= —(e+igd —-—l——:—(idv—(x—illydu) ,  (3.10)
x + il

and the curvature quantities which characterize the solution
(3.9), (3.10) are

C®=2/(x + il P{n +4iAl>
@+ x—il)], R= — 44,

Co= — (€ +&Vx*+17). (3.11)

As was mentioned, the parameter ¢ and g are interpretable as
electric and magnetic charges, respectively, while n and /
represent the NUT (magnetic mass) and the rotation param-

eters.
To obtain directly, from formulas (3.7) and (3.8), a nuil

orbit exceptional electrovac solution [which does not satisfy
condition (iii)], one equates / and u to zero, and accomplishes
the transformations {v', y'} = v~ *{v, p}, x' =x"",
K' =v*Kx~*[the (3.8) equation becomes K ', = — 411],
arriving, dropping primes, at
g=Kdv’ + K ~'dx* +2dydu,
o = (e + igld {ix dv + y du}, (3.12)
where K is always reducible to 1 — 24x* = K. This solution
is characterized by C® = —31,C,= — (e + &)= — 4,
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(Cy,=3C"),and R = — 44. The constant e and g are the
electric and magnetic charges, respectively.

On the basis of the results®’ dealing with all possible
exceptional D’s with an aligned electromagnetic field along
the DP directions, one concludes that solution (3.12) is the
only null orbit exceptional type D solution. It belongs to the
Bertotti-Robinson®® class of metrics; therefore, it can be
named the Bertotti-Robinson null orbit exceptional electro-
vac solution.

IV. CONCLUSIONS

The results of this paper can be summarized by the fol-
lowing statement.

All null orbit type D solutions of the Einstein—-Maxwell
equations for an aligned general electromagnetic field along
the double DP vectors, one of which is always free of com-
plex expansion, belong to two disjoint classes. First, the class
of solutions with the second DP vector possessing complex
expansion reduce to a single solution, given by formulas
(2.14) and (2.15). The second class is given completely, mod-
ulo contractions, by the free of complex expansion null orbit
solutions, formulas (3.9) and (3.10).

The only exceptional null orbit solution, formula (3.12),
belongs to the Bertotti-Robinson class of solutions with
positive 4.

Our present and previous results'® confirm our conjec-
ture, stated in Ref. 10, that null orbit solutions can be ob-
tained as limiting contractions of non-null orbit solutions.

V. REMARKS ON NON-NULL ORBIT TYPE D
ELECTROVAC METRICS ADDED IN THE REFEREEING
TIME

At the refereeing period of the present work, we have
succeeded in obtaining, applying the same integration proce-
dure developed here, all type D electrovac solutions with A
for an algebraically general electromagnetic field aligned
along the DP directions of the Weyl tensor and possessing a
group of symmetries with non-null orbits,"! i.e., the metric
structure given by formulas (T1). In this case, the metric with
signature + 2 and the 2-form of the electromagnetic field
can be given as

_ gy -2 mix) —-ply) , -
g=H (x,y)[————-K(x) dx

K(x) 2, mx)—=ply)
b  (du+ dv)" + ——L=1 4
i) —ply) TP T
—— 2 gyt m) du)2],
m(x) — p( y)

o =H ~XF(x,y) + iD(x, )| (du + m dv) Ady
+ ildu + p dv) Adx}.
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The structural functions H, m, and p have to satisfy the sys-
tem of equations (1.13), (1.16)~{1.19) studied in this report.
The functions € and % ought to fulfill Eq. (1.23) of this text.
The structural functions X (x) and Q ( yj satisfy a generalized
scalar curvature equation; the second member of Eq. (1.20)
presented here acquires the term D, Q, which is solvable by
separation of variables. Note that by executing in the metric
above the transformations

doody— P, dudu+ L2 dy,
Q )

and sending Q to zero, one arrives just at the null orbit metric
(1.15) studied here. A detailed determination of all solutions
of the quoted equations for the non-null orbit class of metrics
is given in Ref. 11. The most general non-null orbit electro-
vac type D solution, modulo all possible contractions, is the
one obtained early by Plebanski and Demianski,'? which
contains as limiting transitions the null orbit solutions deter-
mined in the present paper and also all vacuum with A type D
metrics.'?

According to the referee’s report of the present work,
Debever, Kamran, and McLenaghan'? have recently ob-
tained a single expression for the general type D solution of
Einstein vacuum and electrovac field equations with A, with
a nonsingular aligned Maxwell field if present, which con-
tains the null orbit solutions as a special case.
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The spin-averaged Slater sum of the fermion system is expanded in terms of the square of the
ground state wavefunction of a boson system and the “antisymmetry”” Ursell function. This
expansion is used to obtain the cluster series for the radial distribution function of the fermion
system in terms of ( — Z""/S), where " is sum of chains of ( — /S ) and ( — f# /5 ) bonds. The
series is further expressed in a more compact form using a function L ' defined by Eq. (55), and
the “modified” FHNC approximation for the radial distribution function is presented.

PACS numbers: 05.30.Fk

I. INTRODUCTION

The aim of this paper is to develop a theory for calculat-
ing the radial distribution function (RDF) for the infinite
homogeneous ground state fermion system. In the variation-
al method, a trial many-body wavefunction for such a system
is chosen as'”

Yr =Y P, (1)
where ¥y is the exact boson ground state wavefunction and
@ is an antisymmetric function describing a state of the N-
particle system in the absence of interaction. For a normal
Fermiliquid, @ is taken to be a Slater determinant construct-
ed from products of plane wave orbital and spin functions®*

N

@ —a [T expl, 70| @)
i=1

where a is the antisymmetrizer and £, are spin functions. The

RDF is defined in canonical ensemble in terms of ¥ by

NV - 1) f ---jdfs.--dinwF 2
P (1.2)=pg5(1,2) = e

J-...fdfl...dFN [ |2

Iwamoto and Yamada® and others®™® have used Eq. (1)
to develop a cluster expansion method for calculating the
distribution functions. In their methods, the cluster series
was developed in terms of the boson distribution functions
and was truncated at the third term involving three-body
distribution functions. Since the antisymmetry of Eq. (1) was
expressed in a straightforward permutations, the truncated
series takes into account only low-order exchange cluster
expansion. As Zabolitzky® has recently shown, such expan-
sion can lead to convergence only at low densities. At higher
densities this series has been found to diverge. Though any
finite order of permutation may not guarantee convergence
of the series, it has, however, been argued that this approach
can be made successful by considering large number of ex-
change clustz=rs.®'® The more number of clusters are includ-
ed, the better is the convergence.

The other method, which has been developed recently
using a Bijl-Jastrow form'' of the wavefunction ¢,
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U = [ expliuslis )]

i<j

=TI [1+F,17 (4)

i<j

involves the expansion of distribution function in terms of
diagrams with F- and f-bonds, where F; = exp[u,(i, j)] — 1
and f(kgr;) is defined in Eq. (13) below. In this case, a dia-
gram is a collection of circles (vertices) and F- and f~bonds
connecting some pairs of circles. The f~bonds always connect
circles in such a way that they form a closed loop or ring.
There are two types of circles—black and white. The white
circles are labelled, but the black circles are unlabelled. The
value of a diagram is defined in terms of these functions and
an integration over the positions, which can be assigned to
each black circle. In what is popularly known as Fermi-hy-
pernetted-chain (FHNC) approximation, the cluster series is
summed by neglecting the terms, which correspond to ele-
mentary diagrams E (1,2), where E (1,2) diagrams are both
1,2-irreducible and free of bridge points.'*!* By choosing
two different subseries to be summed, two different FHNC
methods were obtained: One was developed by Krotscheck
and Ristig'* (KR), and other was due to Fantoni and Ro-
sati'® (FR). Recently, Zabolitzky® has used the FR-FHNC
method to calculate the properties of liquid *He and two
model fermion liquids. He has found that this method gives
good results for the ground state energy at low densities and
short range correlation functions. For high densities and/or
long range correlation functions, the results are not so good.
Further, he has found that while the FR-FHNC gives rea-
sonable values of g¥(r) for small values of r, the KR-FHNC
overestimates it.

By partial summation in the FHNC method, one has
tried to take into account the antisymmetry correctly, but
the method as such is not expected to give good results, at
least at high densities, because of certain approximations
involved in the theory. Attempts have, however, been made
to improve upon FHNC theory by evaluating the first few
elementary diagrams appearing in the expansion and incor-
porating them as a link in the chains generated by FHNC
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procedure. This gives FHNC/4 approximation. The
FHNC/4 approximation can, therefore, be regarded as a
first step beyond the FHNC of a systematic procedure that
eventually sums all diagrams. However, to go beyond the
FHNC/4 approximation for Fermi liquid is extremely diffi-
cult. Apart from this, the FHNC method has been developed
using the Bijl-Jastrow type of wavefunction for ¢, which is
approximate one, One may improve the result by using the
exact wavefunction 5. Thus we believe that a theory, which
is developed using the exact boson wavefunction ¥ and tak-
ing the partial summations of the permutation expansion for
antisymmetry, will be better than the FHNC or its improved
form.

In this paper, we develop a cluster expansion method
for evaluating the RDF of the fermion system, in which the
series is expressed in terms of the boson distribution func-
tions and the permutation expansions or antisymmetry are
partially summed. This approach differs from the FHNC
method in selection of the subseries of diagrams to be
summed in the permutation expansion for the antisymmetry
and by expressing the series in terms of the boson distribu-
tion functions. We use the grand canonical ensemble and
functional differentiation technique to derive the results.

In Sec. II, we give the basic theory for a fermion system.
Section III is devoted to develop expansion at constant fuga-
city z and obtain expansion of the /-particle Ursell and den-
sity distribution function of fermion system in terms of
graphs. The series obtained in Sec. 111 is reduced at constant
density p by means of topological reduction technique in Sec.
IV. Using Kirkwood’s superposition approximation,'® the
series is expressed in terms of # 3-bonds, where h 2{, /)

= g5(i,j)-1 is the pair correlation function of the boson sys-
tem. The series is further reduced in Sec. V in terms of

¢ '"(F,, 7;), which is defined by Eq. (42). The expression for
the RDF is reported there in terms of % . Section VI is
devoted to reducing the series in more compact form and to
discuss the “modified” FHNC approximation.

Il. GENERAL FORMALISM

We define the spin-averaged Slater sum for the fermion
system as

wE(l,2,..,N)=(1/4 )Y |¥ |2, (5)
where X, indicates the summation over all spin (discrete)
states and the constant A is the norm of the wavefunction .
Using (1), we can write (5) in the form

wh=wiwa, (6)
where
Wy =Itsl (7)

is the square of the ground state wavefunction for the inter-
acting boson system and

=(1/A)3 |®|*

II elk Ty :

i=1

(8)
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W % may be called as the spin-averaged sum of the noninter-
acting Fermi gas of N particles. Using relation (8), we can
obtain

WAl =1, (9a)
W12 =1+ U31,2), (9b)
WH1,2,3) =14 U%(1,2)

+ U(1,3)+ UF(2,3) + US(1,2,3), (9¢)

WaL2,..N)=1+ S UM, j)+ 3 USiJ k)

+ SUNLAUK, )

+3 UMij, k1) + -, (9d)

where
U1.2) = — (1/8)f*kerio (10a)
U1,2,3) = (2/8?) f(kerio) f(Kerys) flkersy),  (10b)

U#$1,2,3,4)
= - (2/53)[f(kF"12)f(kl=’23)f(kF’34)f(kF’41)
+ f(kerio) flheras) flkeras) flkers)

+f(kF’13)f(k1:"32)f(kF’24)f(kF"41)]’ {10c)
form>2
Us(1,2,.., m
=(=5)"" "2y flhgro) flkgry)f(ke?,),  (10d)
and
flkgr)= 2P f dk explik-7)
= 3[sin(kgr) — (kpricos(ker)]/(ker). (11)

Here k. = (67°p/S)""* is the Fermi momentum at density p
and the factor .S gives the degeneracy of the system (S = 2 for
paramagnetic state of *He or neutron matter; S = 4 for nu-
clear matter).

In analogy to the grand partition function of classical
statistical mechanics,'? we define a generating functional

= 2 N'J- JHZ(I)W,'T,(I,Z,...,N)H dr. (12)

i=1
for the distribution functions of the fermion system. The
spin-averaged /-particle distribution function for the fer-
mion system may be defined as

w12, ) =5F 'S !
N>1 (N— l)'
Xff H Z()WE(1,2,.. ,N) dr,,
i=1 i +1
(13)
where

z(i) = z exp[v(d)]

z is the fugacity and v(f) is a function related to the potential
energy of a particle at 7; due to external forces.
The /-particle distribution function can also be obtained
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from its relationship with the Ursell function?

S Xl by e ), (14)

Sap, =1

n¥1,2,..,0) =

where the sum of the products is carried out over all possible
divisions of / particles with the condition that 2a p, = 1.
The /-particle Ursell function is defined by a functional deri-
vative of In= *,?

YL, 2, ., 0) =

Here X stands for F or B system.
In the following section, we use these relations to obtain
cluster expansion for the distribution functions.

. d'Inz¥
H Z(I)m. (15)

1<i<!

Ili. CLUSTER EXPANSION AT CONSTANT FUGACITY

Substituting (6)-(10) in {12), we obtain the graphical ex-
pansion of = ¥ at constant fugacity in terms of the composite
graphs, with f~bonds (represented by dashed line with arrow)
connecting vertices to form closed loop and y 2 -polyhedron
(represented by a vertex, solid line, shaded triangle --- for
m=1,2,3, ..., respectively). Thus

E¥/EP=14 YT, (16)
ms2

where I, (2} is a composite graph with m black vertices, no
white vertices, some f~-bonds connecting vertices to form at
least one closed loop with y B-polyhedron (1<a<m), each
loop with p vertices is multiplied by a factor ( — S)' ~ and
each vertex is attached to at most one f-loop, and one y B-
polyhedron. The closed loop may or may not form around
x 2. The orthogonality condition is not considered here. It
will be considered later when we discuss correlation func-
tions.

Using Lemma 3 of Ref. 13, we obtain the graphical ex-
pansion of In £ F;

InEF=lnE"+£(2), (17)
where £ (z) is sum of all distinct connected composite graphs
(CCG) with no white vertices, some f~bonds forming closed
loops, with y B-polyhedron (a> 1), with the same restrictions
and multiplying factor as in (16).

Let I"be a graph of {17). Then it can be shown using the
formula

aX n—1 (2

2(1)—7(1—_)("’(1 2,.

+ Z (1 —iy¥_ (2, ...n) (18)
i=2
that

n anr
0555

= [sum of all distinct graphs obtained from I” by
changing n black vertices into white vertices labeled

1,2,..,n]
-+ [sum of all distinct graphs obtained by inserting at
most 7 vertices labeled 1, 2, ..., n]. (19)
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o =8+ 7> 4 ‘(T\’ + [ >
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+ , \ + ,‘
[ ST,

1 1 17~

FIG. 1. The first few graphs of y {(1): the f~bond is represented by a dashed
line with arrow and y & by a vertex, solid line, shaded triangle... for m = 1,
2,3, .

With the aid of (15), (17), and (19), and using the ortho-
gonality condition, we obtain expansion of y }(1,2,...,/) at
constant z:

XiL2, =y L2, )+ x ML, 2, 0 0),  (20)

where y 1(1,2,...,/) is sum of all distinct CCG with / white
vertices labeled 1 2, ..., I, respectively, some or no black
vertices, some f~bonds forming closed loops, with y 2-poly-
hedron (a> 1) of nonoverlapping set of vertices, each loop
with p vertices ( p>2) is multiplied by a factor ( — .S )* ~?, and
each black vertex is attached to an f~loop and y 2-polyhe-
dron (@>>2). The first few graphs for one- and two-particle
Ursell functions are shown in Figs. 1 and 2, respectively.
Using relation (14), we get

nE(1,2, o, ) =nB1,2, ., ) +nM1,2, ., 0), (21

where n{(1,2,...,/) is sum of all distinct composite graphs
(CG) and white vertices labeled 1, 2, ..., /, respectively, some
or no black vertices, some f~bonds forming closed loops, with
¥ B-polyhedron (@>1), with same restriction and multiply-
ing factor as in (20), and each component contains at least
one white vertex.

From (21), evaluating the first few graphs, we may ob-
tain expressions for #} (1) and #5(1,2) at constant fugacity z in

. e W,
Nan= KB o+ T or £ >+

—— 23N
> 1
g ) S
+ + YO L/f +
N
1 ~ 2
1 2 1 2

3N
2
JI R K/ A ! \\
+ + v+ \\ + f \
e ) [ -
1 F-a- roamd -

2

ANE RV R

2%~

e~

-
* % T

1 2

FIG. 2. The first few graphs of y £(1,2); the symbols are the same as in Fig. 1.
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the first order of /%

W (1) = n2(1) — (1/S) [ n2(0,2) kg i) P

—(1/28 )f[n?(l,Z,B) —n3(2,3)n3(1)]
X fP(kgras) dFy dFy + - (22)
and
n5(1,2) = n3(12)[1 — (1/8) f*(ker15)]

—2/8) f n2(1,2,3) f2kerss) dF;

—(1/25) f [13(1,2,3,4) — nB(1,2)n2(3,4)]

X fz(kF"u) drydry + . (23)

IV. EXPANSION OF CORRELATION FUNCTIONS AT
CONSTANT DENSITY

In this section, we obtain the expansion of correlation
fucntions at constant density p . This may be obtained either
by Taylor expansion or by topological reduction technique.
Here we used topological reduction technique to obtain the
result. Instead of using n;f and y 7, it is convenient to use the
correlation functions, defined by the relations'?

_on(L,2,.,0)
Al

AL 2, 1)

g1,2,..,1) or I>2, (24)

h¥(L, 2, ., 1) = , forl>2, (25)
ny(Uny(2)--ni(l)
(1) =In[x{(1)/2(1)] (26)
and
g(1,2)=14+h%1,2). (27)

In order to obtain the cluster expansion of correlation
fucntions at constant density p, we first express y 5 -faces of
(20) in terms of h B-faces by using the relation (25) and then
introduce a function 52, defined by

k81,2, ..., 1) = [sum of all distinct simply connected simple
graphs, consisting of / white 1 vertices la-
beled 1, 2, ..., /, respectively, and s> -faces
(2<m<l)), (28)

giving
h3(1,2)=s53(1,2),
h3(1, 2, 3) = s3(1, 21532, 3) + 52(1, 2)s3(1, 3)
+ 53(1, 3)1s2(2, 3) + 53(1, 2, 3),

and so on.
With the help of (25) and (28), we obtain from (20)

x3(1,2) = n{(Unf(2)h 3(1, 2)
= n(1n? (2 3(1,2) + E2(1, 2), (29)

where E 3(1,2) is sum of CCG with two white n}-vertices
labeled 1, 2, respectively, some or no black »P-vertices, some
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or no s -faces (m>2), some f~bonds forming closed loops,
with the same restriction and multiplying factor as in (20).
E (1,2) has been obtained by transforming y 7 of the left-
hand side of Eq. (20) into 52 , using Eqs. (25) and (28). Now it
is desirable to transform the n}-expansion of y £(1,2} into the
n} -expansion. This is done by using topological reduction.
Every graph G in the set of Eq. (29) contains a maximal 1-
irreducible graph G,, defined as the largest subgraph of G,
which contains all the white circles but contains no articula-
tion circles. For example,

& =~ *-——
6 = 1<‘,,T—<\,,> —> Gm= ;(,‘_,)‘[
2

2

It is clear that a set of graphs on the right-hand side of Eq.
(29) can be obtained by starting with G,, and replacing each
black vertex of G,, by some graph I, of the expansion of
n%(1)shown in Fig, 1. The replacement can always be done so
that the graph I',, is attached to G,, by the white vertex of
I, which is first stripped of its label and blackened. From
this {see, for example, Lemma 4 of Ref. 13), we obtain the
expression for the pair correlation function 4 §(1,2) at con-
stant density:

P*hI(1,2)=p’h3(1,2) + £2(1,2), (30)

where £ 2(1,2) is sum of CCG with two white p vertices la-
beled 1, 2, respectively, some or no black p vertices, some or
no & -faces (m>2), some f-bonds forming closed loops, with
the same restriction and multiplying factor as in (20), no
articulation vertices, and no articulation pair vertices. Here
n}(1) = nf(2) = -+ = p, and we use the conventional graphi-
cal terminology.'>"

Equation (30) gives a graph theoretic recipe for the gen-
eral term in the expansion of the pair correlation function in
terms of the exchange function f at the constant density p.
Evaluating the first few graphs of (30), we obtain the expres-
sion for g5 (1,2) in the first order of />

¢(1,2) = 2121 — (1/5) ke )]
—@/5)p | [8301.23) — 201 283(1.3)]
X (ke o) s
— (1/2S)p2f [gf(l,2,3,4) —2¢5(1,2)¢%(1,3,4)

+g§’(1,2)g§(3,4)]f2(k,=r34) drydr, + - (31)

If we evaluate a few different sets of graphs of (30), we get
g (1,2) =g3(1L,2)[1 — 1/8 f3keryy)]
= (2/5)p [ [£201:23) — gB(1.218201,9)]
X Sl s + (/5 flke o) [ 88012
X flkpry) flkers,) dFy + . (32)
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Evaluating more graphs, one can obtain the higher-order
exchange terms. Exact evaluation of the integrals appearing
in (31) and (32) is not possible, because the values of correla-
tion functions g%(1,2,3), g5(1,2,3,4), - are not known. Such
integrals may be evaluated by using superposition approxi-
mation.'® Under superposition approximation, Eq. (32) re-
duces to an Aviles-Harton-Tolhock (AHT) expression.”®
In order to sum the series of (30), we express
52 (1,2,...,m) in terms of & 3(i, j) by using the superposition
approximation and write

s (1,2,...,m) = [sum of all distinct simply connected simple
graphs, consisting of m white 1 vertices, la-
beled 1, 2, ..., m, respectively, and 4 5-bonds,
such that each vertex is attached to at Jeast
two A4 B-bonds]. (33)

For example,

s5(1,2,3)=h3(1,2A3(1, 3)h 2(2, 3).

The consistency of Eq. (33) with Eq. (28) can be demonstrat-

ed by expanding 4 P(1,2,...,/) in terms of 4 2(/, j) by using the

superposition approximation. When (33) is substituted in

(30), we obtain the cluster series for the RDF of the fermion

system in terms of 4 2-bonds:

&(1,2)=&(1,2)+ L41,2), (34)

where .7#(1,2) is the sum of CCG with 1 vertices labeled 1,
2, respectively, some or no black p vertices, some or no 4 ;-
bond between any two vertices, at most one 4 5-bond, some /-
bonds forming a closed loop, each loop with p vertices is
multiplied by a factor { — 5)' ~#, each black vertex is attached
to an f~loop and at least one % 2-bond, at least one f-loop, no
articulation vertices, and no articulation pair vertices. Some
graphs of the RDF are shown in Fig. 3, where the white and
black vertices have the vertex function unity and p, respec-
tively. Here the 2 B-bond is represented by a solid line and g5 -
bond by a curly line.

This method can be extended to obtain the cluster ex-
pansions of the higher-body distribution functions, but we
do not pursue this further in this paper. In the following
sections, we develop a method for summing the series.

~,
- ~ N
02 = 02y + x4+ \
1 ~»—"2 '

1 2 17~>"2 27—
Ve
AN FANY NN
LY
+ ¥ k\ + J X4 ¥ \
l \ !
\ / '
1 —"2 2 =11 =372
s \
+ f A i
2 —=-"

FIG. 3. The first few graphs of g5 (1,2): the f-bond is represented by a dashed
line with arrow, # £ and g7, respectively, by the solid line and the curly line:
white and black vertices have the vertex function 1 and p, respectively.
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V. EFFECTIVE TWO-BODY EXCHANGE FACTOR AND
THE SUMMATION OF SERIES

The expression for the RDF of the fermion system can
be expressed in terms of a function, which is obtained by
summing all the chains (graphs consisting of only one path of

J-bonds superimposed or not on 4 5-bonds joining the white

vertices 1 and 2) appearing in (34). Such types of graphs with
two or more f-bonds superimposed on an /4 $-bond can be
constructed by inserting f~bonds in all possible ways at the
end or in the middle of the chains. If € °F,, 7,) be the sum of
the terms corresponding to all such graphs, then % °F,, 7,)
can be redefined as

%0(71’ F)) = flkerio) [ 1 —h3F, 72)] + B(F, 7))
where
(p*/S*)B (7\,7,) = [sumofchains of one or more f~bonds con-
necting two white( — p/.S') vertices super-
posing 4 7-bonds in all possible ways such
that each black vertex is connected with
at least one 4 2-bond, each black vertex

(35)

has a vertex function { — p/S')]. (36)
We can write the series as
(P*/SHBF, 7o) = (p*/S) S B™F,F) (37)

m=1
where B "(F,, 7,) is the sum of all such chains with m f~bonds
superposed on 4 5-bonds (i.e., m, “f h 5-” bonds). These
graphs with m = 1 and 2 are shown in Figs. 4(a) and 4{b),
respectively. These chains can be expressed in a more com-
pact form, introducing a function defined by

F(F,Po)= —(p/S)80F, — 7)) + (= p/SVf ke r12), (38)

.

2% Tt
ETB( (Wh) = H + H -v—;
+ T._q_.é‘:)é

-

+ ?-—Q—A-__k——a—g

- — e T 2
—21!23(3?2) = E g T TN o T T g T P N e
+ o__.,__#’:\#:hé + i‘f_.l__.,__‘_’l:?

+ o—— P it D S
1 2
-> —
+ O b N ~o— 7_.‘2’
1

-+ T—o-—ﬁh——-’——‘:::é--»—-’——%

FIG. 4. Simple chains representing (a} (p*/S 3B "F,, 7,),
(b) { p*/S B ?(F,, 7,); the symbols are the same as in Fig. 3.

S. K. Sinha and Y. Singh 2508



where & is the Dirac delta function. F (7, 7,} is represented
graphically by a large circle surrounded by two white or
black circles corresponding to the coordinates 7, and 7,.
Then we can express B for n = 1 and 2:

o580, = o )

= J.F(Fp X)) flkegx2)

X hB(X,, X,)F (X,, F,) dX,dX,, (39a)

-3 —

(Pz/S Z)B (2)(71’ F)) =

= 1F(r, X ) flkexio)h ?(?—Cp-’—‘ﬂF(xz’ X5)

X flkgxsq)h 2% XJF (X, 7))

X dX ,dX,dx dx,. (39b)
With the help of above definitions, Eq. (37) can be summed
using a Fourier transform giving

2/¢2 — 1 T oikF Fz(k)¢(k)
(p/S )B(')_(zfr)l*fdke [1 —F(k)¢(k)]’ o)
where F (k) and ¢ (k) are the Fourier transforms of F (r) and

¢ (N=flken)h3(r), ie.,

F(k)= fd? e*F (7)

—[1 +7)—p/S), (41a)
bk)= fa-;e— R g PV B(0), (41b)
F=(—p/S) f dF e~ *f (k)

— — Ok —k). (41c)

@ is the unit step function. From (35) and (40), we obtain

0 = 1 7

E ATy f k

X [f(l +B)_+B2(‘l. +f):|e-iir~7,2, (42)
[—B(1+])

where B = (—p/S)é (k).

The link % ° is used to express the RDF of the fermion
system. This is obtained by replacing /-bond by % °-bond in
(34). We can repeat the process of summing the chain graphs,
except that the basic link in each chain is not fbut €~ to
obtain the new link & . Thus % "(F,, 7,) is expressed by (42)
using %'~ in place of f.

Evaluating graphs in terms of €', (34) can be written

as

g;:“‘"’u,z)=g?<1,2)[g;‘("’(1, 5+ 3 Ag:‘"’u,z)]. 43)

The subscript m indicates the m-body contribution to the
RDF. In the first order, the RDF for the fermion system is
approximated to
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& "r) = g5 (riga™(r), (44)
where
g3r) = [1—(1/8)6" (1] (45)

and g2(r) is the RDF arising from ¢/ . The analytic expres-
sion of the three-body contribution 4g%”(r) may be obtained
from (34);

4851, 2) = — (20/5) f £2(1,3)h 32,36 (1,3) dF,

+ (2p/S)‘5("’(1,2)f[g§(1,3)g?(2,3) —1]
€'"™(2, 3)E"3, 1) dF,. (46)

Evaluating further classes of graphs, one can obtain expres-
sions for Agy"(r), Ag2™(r), «-. If € ")(r) is approximated to
[flkg7), Eq. (43) gives the Iwamoto—Yamada® (IY) expansion
for the RDF of the Fermi system.

VL. “MODIFIED” FHNC APPROXIMATION
We now define

Y j) = — (1/S)EF, F)= ¢ b @47)

Since the two-particle exchange factor is expressed by ( — 1/
S)f?(kgr;), one may call the function y"(i j) the effective two-
particle exchange factor.

Using (47), (43) can be written as

£:(1,2)=25(1,2) + X (1,2). (48)

Here g5(1,2) is the RDF of the fermion system expressed in
terms of "

£(1,2)=g(1,2) + L4(1,2), (49)
where 3/ A(1,2) is the sum of CCG with two white 1 vertices
labeled 1, 2, respectively, some or no black p vertices, some
¥""-bonds, some or no 4 ¥-bonds, each black vertex, which is
attached to an "-bond (superimposed or not an 4 3-bond) is
attached to an 4 2-bond, no vertex is attached to more than
one #"-bond, no articulation vertices and no articulation
pair vertices. While X (1,2) belongs to .#°4(1,2) with three or
more % "-bonds forming a loop. Some graphs of this type
are shown in Fig. 5.

We now sum up all the “chain” terms, appearing in (49),
namely, those associated with the graphs, which consist of
only one path of lines joining the white vertices 1 and 2. The
graphs of this type consist of alternate 4 -bond and -
bond: the ”-bond may be superimposed or not on an /4 B-
bond. These chain graphs may consist of

(a) 4 2-bonds at the two extremities,
(b) One % 3-bond and one ""-bond superimposed on gz-
bond as extreme lines,

o ~—

FIG. 5. Some graphs of the X (1,2) type.

S. K. Sinha and Y. Singh 2509



1 2 1 2

(a)
VA N
1 2 ] 2

(b)

1
1 2
(

g\

(d)

FIG. 6. (a) Chains with A £-bonds at the two extremities; (b) chains with one
h 2-bond and one y*"4 $-bond ("-bond superimposed on gZ-bond) at the
two extremities; (c) chains with 3"'g"?)-bonds at the two extremities; {d)
propagator.

(c) ¥-bonds superimposed on g=-bonds (i.e., "g5-
bonds) at the two extremities.

These graphs can be constructed by repeatedly insert-
ing the “propagator” consisting of graphs of Fig. 6(d) in
place of the black points [labeled I in Figs. 6(a,b,c)]. The few
graphs of these series are shown in Fig. 6{a,b,c).

The contributions of the terms corresponding to the
chain graphs of these three types are

Gliall2) = (27:)3,; f dk 1}1—2&55: et 150

Gin(1,2) =(~271)5fd12 _1%%:'3_%’ (51)
where

h= pf drh B(r)e’*”, (53a)

da=p f dF/ ([ 1 + h3(r]e™. (53b)

In the chain approximation, the RDF of the Fermi sys-
tem is obtained from (49) as
g5(1,2) =gZ(1,2){ [1 + ¥(1,2)][1 + G }}(1,2)]
+2G(1,2) + G (1,2)}. (54)
Having G|, G\, and G, we can construct compos-
ite chain graphs by connecting the white vertices 1 and 2 by
two or more single chains, as in Fig. 7. The contribution of
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FIG. 7. Composite chain graphs.

any composite chain graphs is a product of contributions
from single chain.

We now sum all graphs in which the white vertices 1
and 2 are connected by any number of chains of the types
shown in Fig. 7. The sum of all these graphs is given by

L"(1,2) = L'™(1,2) + L(1,2) + L'™(1,2) + L (1,2),

(55)
where
LM(1,2) =y"(1,2) + [1 +¥"(1,2)]1G 2 (1,2)
+ ZG‘,,"}(I,Z) + G‘;’y’(l,Z) (56)
L1,2) = [1+¥"(1,2)]{exp[ G 3(1,2)]
- Gi(1,2)—1}, (57)
L§1,2) = [2652(1,2) + G (1,2)]
X[exp[G‘;’,ﬂ(l,Z)] -1}, (58)
L{(1,2) =G} (1,2)exp[G$)(1,2)]. (59)
Thus, we find
L"™1,2)=[1+$"(1,2) + G(1,2) + 26 (1,2)
+ G(1,2)]exp[Gin(1,2)] — L. (60)

We next construct chains from more complicated link
L "{i, j). The new set of single chain graphs is obtained by
replacing " by L " in Fig. 6. So the contributions of these
single chain graphs can be given by (50)~(52) provided ' is
replaced by L ™ in (53b). The composite chain graphs are
made from the new single chain graphs. Putting G}, G},
and G thus obtained in (60) gives the link L  to be used in
constructing still more complicated chains.

In this approximation, which we may term the “modi-

R

1 2 1 2 1

FIG. 8. Elementary graphs.
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fied” FHNC approximation, the graphs with open structure
such as chain graphs are included in the summation. The
graphs with a very compact structure, such as those shown
in Fig. 8, are left out from the summation. The other class of
graphs, which have not been included here, are those belong-
ing to the category X (1,2) [see Eq. (48)]. It is, however, possi-
ble at least in principle, to include some of these graphs. Ina
future publication we plan to explore this and to evaluate the
RDF for some fermion systems.
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Derivation of the generalized Langevin equation by a method of recurrence

relations
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The generalized Langevin equation was first derived by Mori using the Gram-Schmidt

orthogonalization process. This equation can also be derived by a method of recurrence relations.
For a physical space commonly used in statistical mechanics, the recurrence relations are simple
and they lead directly to the Langevin equation. The Langevin equation is shown to be composed

of one homogeneous and one inhomogeneous equation.

PACS numbers: 05.40. + j, 05.60. + w

I. INTRODUCTION

The generalized Langevin equation (GLE) is an exact
equation of motion. It was first derived and formally solved
by Mori using a projection operator technique’ which turns
out to be a formal version of the Gram-Schmidt orthogona-
lization process. Because the Gram—Schmidt process is a
general method of orthogonalization, it is unwieldy when
applied to some specific infinite-dimensional Hilbert spaces.
Thus the work of Mori, although very remarkable an
achievement, seems highly formal. It was recently shown?
that since the GLE is equivalent to the Liouville equation
(hence the Heisenberg equation of motion), one can obtain
formal solutions for time evolution by solving the Liouville
equation directly instead of the GLE.

The alternative way of obtaining the formal solutions
was spurred by the recognition that the Hilbert space in
which statistical problems are considered is a realization of
abstract Hilbert space. For such a realized space there is a
simplifying orthogonalization process via recurrence rela-
tions.? It was found that the recurrence relations represent
formal solutions for time evolution in this space. Also, they
contain other details not previously seen by the approach of
the GLE.

Although the GLE and Liouville equation are equiva-
lent, the former is still physically the more interesting. Be-
cause of its close and deep connection to the classical Lange-
vin equation,* the GLE can provide considerable insight into
dynamical problems. Hence it is advantageous sometimes to
view a physical problem of interest through the GLE. For
this reason it seems useful to derive the GLE via recurrence
relations.

1l. RECURRENCE RELATIONS

Let A = A (t = 0) be a dynamical variable in .. For
simplicity we assume A to be Hermitian. The time evolution
of 4 is governed by the Liouville equation

dA (t)/dt =iLA(t), (1)

where L4 = [H,A] and H is the Hamiltonian of the system.
We further assume that the space . is a realization of ab-
stract Hilbert space, defined by the inner product,

3
(X.Y) :L‘“ (XA)YY — (X (P, )
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where X, YC.”, f is the inverse temperature 8 = 1/kT,
XA )=-expAH)X exp(— AH), and (XY ) is an ensemble
average defined by (XY ) = Tr(e ##XY)/Tr(e ~#¥). It was
shown that the solution for 4 (¢} in ./ may then be given as

At)= S a,0)f., (3)

v=0

where {a,(t)} are a set of time-dependent real functions.’
Also { £, ] are a set of orthogonalized basis vectors which
span .* and satisfy the recurrence relation (RR),

fosr =L 441, v>0, (4)
where f, =iLf,, 4, = (f, L/, 1./ 1) f- =0, and
A,=1.? The above three-term RR will be referred to as the
RRI. It has one arbitrary initial choice among { £, }. Given
this choice, the rest is allowed no more freedom by the RRI.
If we choose f, = A4, the boundary condition requires that
ay(0) = landa, (0) = 0, v>1. Thena,t ) represents the relax-
ation function of linear response theory.' Now since (3) must
satisfy (1), (4) yields a recurrence relation for {a (¢)}:

A, e, ()= —a,lt)+a, (), v>0, (5)

where g, (¢t} =da,(t)/dt and a_ (¢t }=0. The above RR will
be referred to as the RRII. It will be seen that the RR1I leads
directly to the GLE.

lll. THE GENERALIZED LANGEVIN EQUATION

We apply the Laplace Transform .7~ on the RRII to
obtain

1 = zayz) + 4,a,(z), (6a)
avfl(z):zav(z)+Av+lav+l(z)! vel, (6b)

wherea, (z) = 7 [a,(t)]. Toderive the GLE from the above
two equations, we introduce two quantities ¢ and b, defined
entirely in terms of a,:

¢ (z) = 4,a,(2)/a,(2), (7)

b (z) = a,(z)/ayz), v>1. (8)
Then, from {6a) and (7),

VVagz) =z + ¢ (2), )
and from (8) and (9},

b,(2) =z + ¢ (z))a,(2). (10)

By applying the inverse Laplace Transform .7 ~ ' on (9), we

© 1983 American Institute of Physics 2512



obtain, recalling a,(t = 0) = 1,
do(t)+Jdt’¢(t—t’)ao(t’)=0, (11)
0

whered (t) = .7~ '[¢ (z)]. Hencesimilarly, we have, recalling
a,{t=0)=0forv>1,

c‘zv(t)+J'dz'¢(t—t'>av(t')=bv(t), (12)

where b,(t) = .7 ~'[b,(z)]. We now multiply (11) by f; and
(12) by f,, v>1, and then combine the two equations. With
the definition (3), we obtain

A(r)+fdt'¢(z—t'wz')=f[rl, (13)

where we define

flel=Alel = Y be)f.. (14)

v=1
If f[¢ ] indeed is the random force, the above expression (13) is
precisely the GLE.! It is interesting to note that the GLE
consists of two types of equations, one homogeneous and the
other inhomogeneous, reflecting (6a) and (6b). In analogy to
the role of a,(t ) with respect to 4 (¢ ), the memory function ¢
may be termed the relaxation function of the random force.
Also, from (8) we obtain

av(t)=fdt’a0(t—t’)bv(t'), vl (15)
(¢}
Hence it follows that

Al = afid + [(dt'afe —0)f12°), (16)

where 4 = f,,. The second term of (16), often called the non-
secular part, is orthogonal to the first term, the secular part,
for > 0 owing to (14).°

IV. THE RANDOM FORCE

The necessary condition for /¢ ] being the random force
isthat (f[t],4 ) = Ofor r>>0, where 4 = f;,. The sufficient con-
dition is that [z ] lies in the largest linear manifold of .. Let
& . be the vth linear manifold of .=, spanned by
{ fosfi 1o} Alsowedefinef, [t 1 =2, _,a,™Mt)f. so
that f, [t ] C.%, . For example,

LHltl= S al)f, =A4(),

v=0

Altl= S bu0f, = £lr],

Lltl= Y () f,,

v=2

etc., where we have puta, ¥ = a,, v>0;a,V =b,, v>1;
a,? =c,, v>2;etc. Then, (i) £, D5, D5, but
FoQ L QS i) f, LS, if v <y, (iii) f, [t ] C#, ifand
only if v>u. Now, considering f,[¢ ], we have ( fi[z],/5) =0
andf,L.7,. Alsof [t 14 .7, ifv> 1,butf [t ]C 7, whichis
the largest linear manifold of %, i.e., &, Lf, only. By extend-
ing this argument, it is easy to generalize that £, [7 ] is the
random force for £, | [z ], v>1.

One can arrive at the same conclusion somewhat less
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formally by the following route: From (8), we have

b\(z) = a\(z)/a4fz), (17a)

b (2)/b, _{2)=a,(2)/a, _(z), v>2. (17b)
Hence with (6b),

b,(z) = [z + A,0,(2)/b\(2)] ', (18a)

by(al/b, _\(e) = [+ 4, by, 2/b,2)] !, V2

. . (18b)
Combining the two, we obtain
bi2)=1/z+A4,/z+ A/z + -
(continued fraction). (19)
Thus
by =ay{4,}—{4,,,})) v>1 (20)
We can generalize it as
b, =a, (4,4, 14,14, 5,) vaL
1)

Now, since {4, ] represents a set of lengths of the vectors
spanning a linear manifold of .7, f}[¢ ] is in a linear manifold
spanned by all but f;,. Hence it is orthogonal to f, and belongs
to the largest linear manifold of .%.

Finally, one can obtain the GLE for a dynamical vari-
able in any linear manifold of .#. Since f, [t ] C .7,
fo [t]1CF, y,andf, L7, |, we have, for v>0,

fv[t]+Jotdt'¢v+1(t—t')fv[t']=fv+.[t], (22)

where

() =L, LD fui) vl (23)
with ¢, = ¢. The solution for £, [¢ ] is obtained by generaliz-
ing (16):

£ilt] =a, el + fo'dt'av‘“’(z R

where a,™(t) = .7~ '[a, Mz)], v'>v, and
a,2) = a,(2), v>0; a,"(2) = b,(2) = a,(2)/a,(2),

v>1; a,'”(z) = ¢, (z) = b,(2)/b,(a) = a,(z)/a,(z), v>2; etc.

V. DISCUSSION

We have seen that the RRII leads directly to the GLE.
The two, however, are not entirely equivalent. The RRII
gives a relationship between the components of the dynami-
cal variable and its random force. Hence this relationship is
“microscopic.” The GLE is a gross or total relationship
between the two physical quantities. The microscopic detail
contained in the RRII, in fact, shows that the GLE is com-
posed of two types of equations. It also gives a precise mean-
ing to the random force.

The RRII represents a realization of an abstract Hilbert
space. Hence it contains information about a particular
space in which a given physical problem is considered. For
example, its structure denotes what functions are admissible
or inadmissible as solutions for a, (¢ ). In addition, given a(t ),
the RRII yields all other components of 4 (¢ ). [See the Appen-
dix for an illustration.]

The inequivalence between the RRII and the GLE
stems from the very nature of orthogonalization. The GLE is
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obtained by the Gram-Schmidt process. Hence it is general
and not specific. The approach via the RR is specific and not
general. The advantage of one approach over the other ulti-
mately rests on whether one’s space is realized or remains
abstract.
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APPENDIX A: FORCE CORRELATION FUNCTION

We consider the time integral of the force correlation
function®

I= det A (VA ), (A1)

where A = A (¢t = 0). From (3) and (5), we have 4 = f; since
a,(0)=0ifv>1 and 4,{0) = a4(0) = 1. Hence

I= f Cat OV fi) = f “dt ao)
—ayi= )= — gt = w0 )/Ay. (A2)

The last step follows from the RRII. Thus if the slope of a,(t )
vanishes at ¢t = o0,/ = 0.

We consider a few examples: (1) If a,(t ) = exp( — yt?),
where y is some positive constant, then = 0. This is real-
ized in the spin van der Waals model’ with 4 = S, , where S,
is the x-component of the total spin opzrator. (2) If
ay(t) = Jolut ), where u is a constant, Jy(£) = — J,(¢) goes to
zero as t— oo (although very slowly) and / = 0. This is real-
ized in the ideal electron gas in two dimensions at 7= 0.®
Here J, and J, are the Bessel functions of orders 0 and 1,
respectively. (3)Ifa,(t ) = cos wt, I #0. Thisisrealizedinthe
high-frequency limit of a variety of cooperative models in-
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cluding the 3d XY model® and also in noncooperative models
such as single-spin models. '°

We next consider the time integral of the random cur-
rent

J= f:dr(f,,fl[t WA ) (A3)

From the definition of the random force (see Sec. IV) and the
orthogonality of { £, }, we have

J=J drb(t). (Ad)
0
Also using (13), the above can be expressed as

J=1+fwdtf’dt’¢(t~ t)ay(t’). (A5)

Clearly the two quantities J and 7 are very different. Even if
I =0, J need not vanish. The expression (A3) may be recog-
nized as the zero-frequency limit of the Kubo conductivity.'!
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Recently Weinhold described a natural metric on the state space of an equilibrium
thermodynamic system. We describe the coordinate transformations which preserve both the first

law of thermodynamics and this metric.

PACS numbers: 05.70. — a, 02.20. + b

1. INTRODUCTION

We consider an n degree of freedom thermodynamic
system whose extensive variables are x ..., x,,, and conjugate
intensities are dE /dx; = y;, where E is the internal energy.
Weinhold' pointed out that the second derivative matrix

IE _ .
[8x, axj] =[] =7 1)

being symmetric and positive definite, may be used to define
a metric structure on the set of equilibrium states of a ther-
modynamic system. Distances measured by 7 have been in-
terpreted as changes of velocities characteristic of the type of
path.?* He examined the group of coordinate transforma-
tions in the state space of X = (x,,...,x,,) which preserved 7,
and found that this group was isomorphic to Gl{n), the group
of all invertible linear transformations. Hermann* pointed
out that a fuller view of the mathematical structure of equi-
librium thermodynamics may be found in phase-energy
space (X,Y,E) = (X,,.-.sX 1, V15---1Vn s E ). Below, we solve the
problem of finding the group of coordinate transformations
in phase-energy space which preserve 7.

Following Hermann, we identify the state space of an n-
degree of freedom thermodynamic system with a surface of
maximal dimension in phase-energy space which is a solu-
tion of the Pfaffian equation

w=dE— Yy dx;=0 (2)
i=1

expressing the first law of thermodynamics, where o is the
differential form defined by (2). The general theory? states
that this will be an n-dimensional surface, which may be
coordinatized by x,...,x,. When E is restricted to such a
surface, it becomes a function of x,,...,x,, alone. The most
natural condition is the invariance of the first law. We will
call coordinates (U, V,P } admissible provided

dE— Sy dx,=0 if dP— Suvdu=0. [}

i=1 i=1

This condition is equivalent to

dE — 3y, dx, = a(dP ~ 3, du,.) n

i=1 i=1
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for some function a. An obvious stronger requirement is (4)
witha = 1. Ifthis is satisfied, we say that the form of the first
law is preserved. Such transformations are called contact
transformations,* and they form an infinite-dimensional
group.

We will also require the invariance of the Weinhold
metric

n= 2 dy, dx;, (5)

i=1
where we used the same symbol 7 for this differential 2-form,
since when 7 is restricted to a maximal surface, its matrix
relative to the coordinates (x,,...,x, ) is given by (1). We can
see this as follows. In such a maximal surface dE = Z]_,
X (OE /dx;)dx;. Since @ = 0 on the surface we have
dE = 27_,y, dx;. Since dx; are independent on a maximal
surface y; = JE /dx;. Thus

n n n aZE
= Ndy. dx, = —— dx, }dx,, 6
] ,.;, y, dx, .; ; 3, o x,) x; (6)

which gives the result. There are two important things to
note here. The first is that 3°E /dx, dx; is only defined on a
maximal surface and not on phase-energy space (E and x; are
independent coordinates on phase-energy space and thus
FE /dx, dx; = Oin this setting). Since there are many maxi-
mal surfaces going through one point, it is not even clear that
the 3°E /dx, dx; defined using one surface will be consistent
with the metric defined using another surface. However, all
these metrics are consistent because they agree with % which
is defined on all of phase-energy space. We assume that 7 in
{5) is the fundamental object, but caution the reader that 7 is
not the only metric whose restriction gives 8°E /dx, dx, on
each maximal surface. A quadratic form 7, will have this
restriction on each maximal surface if and only if it is of the
form

7, =1+ b, (7)
where @ is an arbitrary 1-form. Thus there are (2n + 1) free
functions in the general metric that extends 6°E /dx, dx; to
phase-energy space. Among these metrics, the choice with
8 = 0 seems the most natural. The only thing that is clear
about the problem with general & is that its solution is way
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beyond the techniques presented in this paper. Note that
since & has been fixed, the requirement of the invariance of 7
is a stronger requirement than the invariance of 8°E /dx, dx;
alone.

The invariance of 7 amounts to the condition

idy, dx;, = zn: dv; du;. (8)

i=1 i=1

We find two types of transformations that leave w and
invariant. The first consists of transformations that are anal-
ogous to translations. They are of the form

FX,YE})=(X+bY+dE+dX+e), 9

where b, de R " and ecR. These pseudotranslations do not
commute like real Euclidean translations, but they do form a
group isomorphic to the n-dimensional Heisenberg group
(H,), a group®’ which is very close in structure to R ". The
second type of transformations are analogous to rotations.
They fix the origin and are linear. Their matrices are of the
form

4 0 0
o «)' o} (10)
0 o 1

where A4 is any invertible » X n matrix. Thus these transfor-
mations form a group that is isomorphic to Gl(r). Just as the
Euclidean group is the semidirect product of the rotations
with the translations, we find the group of all transforma-
tions that fix @ and 7 is isomorphic to a semidirect product of
Gl(n) with H,,. Thus the structure of this group is similar to
the structure of the transformation group on R " that leaves
the standard Euclidean metric invariant.

In Sec. III we described those transformations which
multiply @ and 7 by some constant factor. This allows more
transformations. It is natural to allow the multiplication of
by an arbitrary function as we described in the beginning of
this chapter. However, a long and tedious computation us-
ing the ideas of Sec. IT may be used to show that if a transfor-
mation fixes 77 and w by a factor ¢, then a must be a constant.
The suitability of letting i change by a factor is not so ob-
vious. However, if the factor is constant, it may be interpret-
ed as being only a change in energy scale. Thus these trans-
formations are also given in Sec. IIL

Il. ABSOLUTE INVARIANCE

Letting X, Y,U, and ¥V be n-component real vectors, we
wish to find the group G of all coordinate transformations
f:R »+ 'R ¥+ 1guch that

f(X’Y’E) = (U,V,P),

while

dE — Ny, dx, =dP— 3 v, du,, (11a)
i=1 i=1
idy,- dx; = Y dv; du,, (11b)
i=1 i=1
and [as a consequence of (11a)],
Zn:dx,- ANdy, = 3 du; Adv,. (11c)

i=1 i=1
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It proves convenient to separate the problem into two parts
by examining the subgroup J = {f€G: £(0) = 0} of transfor-
mations which fix the origin and

H={feG: fIX,Y,E)=X+b, Y +d, E+dX+e),
b, deR" ,ecR } (12)

of “translations.” Elements of H involve arbitrary transla-
tions in the X and Y variables, but the invariance of (11a)
requires the additional term d - X in P. The fact that Jand H
are subgroups of G is easily verified.

Lemma I: An arbitrary feG may be written as the pro-
duct of jeJ and heH.

Proof: Consider feG and suppose f(0) = (by,d,,e,). Then
choosing Asuchthath (X,Y,E)= (X — by, ¥ — dy, E — dy-X-
— e, + bgd,), we find Aof fixes the origin and hence equals ;
for some je/. But then f= k& ~'oj, where

h'X,Y,E)= (X +bg, Y+ do, E + do-X + e,JcH.(13)

Note further that the only element of H which fixes the ori-
gin is the identity. We see below that / is normal. These facts
are enough to guarantee that G is the semidirect product of J
and H.

Theorem 1: H isisomorphic to the (2n + 1}-dimensional
Heisenberg group®’ H(n).

Proof: Clear by the correspondence

1 0
b, 1 0
Hdef — Tv(b,d,e) -1 . . E
b, O 1 0
e d, d, 1

(14)

Theorem 2: The subgroup J of elements of G which fix
the origin is isomorphic to

O(n,n)nSp(n)=Gl(n).

The key here is to note that by (11a) the (2n + 1)th com-
ponent P of j(X,Y,E ) is determined once the 2n components
U and V are specified, while in terms of these 2n components
the restriction of j must preserve a nondegenerate quadratic
form 7 of type (n,n) and a symplectic form dew. Hence j must
be in both O(n,#) and Sp(n). For a proof of the second isomor-
phism indicated in the theorem as

O(n,n)Sp(n)=Gl(n). (15)
see Helgason.®

Proof of Theorem 2: Define m:R *" 'R *" and
I,:R*" R+ ! for each ecR by

X, Y,.E)=(X,Y) (16)
and

I(X,Y)=(X,Y,e) (17)
Then 7 = 7*(7) anddw = 7*(dw) define nondegenerate qua-
dratic and symplectic forms on R *". For jeJ and e€T,, define

Je = el (18)

which maps R >R *" and leaves 7} and do invariant. Note
thatj, is the action of j on the X and Y variables with £ held
constant equal to e. Since j, preserves 7 and fixes the origin,
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itisinO (n n) and is in particular linear.” Since j, also pre-
serves dw, it must also be in Sp(n). Thus

JX,Y) = (4X,4")7'Y) (19)
for some AeGl(n), where A = A (e) may depend on e. Then
JX,Y,E)=(AX,(4")"'Y,P(X,Y,E)), (20)

i.e., J fixes hyperplanes of constant E. To see that 4 is inde-
pendent of Ewelet 4 = [a;] and 4 ~' = [b, ] and use the
invariance of 7 to get

S0 - S 0n)

i=1 i=1

da
= zdx dy, + z X; bk,—u—dEdyk
1

i=1 k=
db
+ Z Vit ki dE dx;
k=1 d
n db
z — " MJEdE (21)
k= *dE dE

which, by the linear dependence of the differential forms in
the expansion, implies the equality of corresponding coeffi-
cients. In particular,

bek,

=1
for arbltrary (x,,...,x,, ). Thus

E bk:

i=1

and, since [bk,-] is invertible,
da

1 -0, k=1,.,n (22)

_o kj=1,.,n (23)

d—];'j =0, ij=1,.,n (24)
Substituting (24) into (11a) gives
dE =dP (25)
and, since j(0) =
E=P (26)
The correspondence between
A 0 0
J€r=L,=|0 )=t o (27)
0 0 i

and

AeGl(n)=O(n,n)"Sp(n) is now clear.
Lemma 2: H is normal in G.
Proof: Forj = L,eJ and h = T, , ,€H, we compute

Jjohoj~YX,Y,E) =joh{4 ~'X,A'Y,E)
=jAd 7 'X+bA'Y+4d,E
+dd4d7'X +e)

= (X + A4b,Y + (4°)"d,
E+(4')"'d-X +e)
=h'(X,Y,E), (28)

where &' = T 4 4114 €H. This can be written as
L, T(b,a,e)LA =T, L,(b.d,e)* (29)
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The above results prove the following theorem.
Theorem 3: G=J® ,H=Gl(n)® ,H(n).

lil. RELATIVE INVARIANCE

We now allow % and w to change by constant scale fac-
tors. This extra degreee of freedom adds two generators.
Without this freedom, 7 fixes our unit of energy, though
diagonal matrices in Gl(n) allow scaling of the other quanti-
ties for changes of units. Changes of energy units give one
generator, while a complete Legendre transform on all varia-
bles gives the other generator. Accordingly, we seek the
group G of all coordinate transformations
fIX,Y,E)=(U,V,P) such that

dE — Zy, dx; —(dP

i=1

> v du, ) (30a)

i=1

and

.Zxdx dy;, = (.Zldu dv)ﬁ (30b)

for some nonzero a,B<R. Again, by taking exterior deriva-
tives in (30a}, we get

de Ady, _(Zdu /\dv)
i=1 i=1

Note that GC 8 consists of those elements of ?? with
@ = B = 1. Note that the correspondence f *—(a,8 ), sending
JEG to the pair of scale factors of /, defines a homomorphism
of G to R * @ R * with kernel G showing that G is a normal
subgroup of G.

Lemma 3: For allfea, la| = 18]

Proof: For feG, again define

(30¢)

fo=afl, (31)
and note that

f.2@) = (1/B)7 (32)
and

f¥dw) = (1/a)dw. (33)

Recalling that a quadratic form Q transforms under f, to
[.*Q)=Df,Q(Df.), where Df, is the Jacobian matrix of £, ,
we get, by looking at (32) and (33} in any coordinates and
taking determinants,
(det Df, J'(det 7) = det((1/8)7)) = (1/8°")(det 7)), (34)
(det Df. )*(det do) = det((1/a)dw) = (1/a*" )(det ).
(33)
Since det('fy) and det(ZiZ;) are nonzero, this gives
= 1/(det Df.)* = 3", (36)
ie., |a| |3 | as desired.
We now find the generators of G which arenotin G. For
aeR *, a nonzero real number, let
U, X,Y,E)={(X,aYaE). (37)

Note that U,€G and (@)U, = B(U,) = 1/a. Let U be the
one-parameter subgroup of G generated by the U, aeR *.
Since the only element in U with @ = 8 = 1 is the identity,
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UnG contains only the identity element. U and G generate a
subgroup

= {feG:alf) = BIf)}- (38)

U and G are clearly contained in M. On the other hand, for

JoeM with a(f)) = B (f,) = a, U, f,€G since
a(U,, /o) = a(U,,)alfo) =1, (39a)
B(Us,,fo) =B(Ua, B (fo) = 1. (39b)
The commutation relations
UL,=L,U, (40)
Ua T(b,d.e) = T‘[b,ad‘ae) Ua (41)

follow easily by applying each side to (X, Y,E ). We have es-
tablished that

M=Ue®,;G=R*g4(Gl{n)& ,H(n)). (42)

The commutation relations (29), (40), and (41) show that U,
and L, commute, while the translations are normal in M.
Thus we may also write

M= (R*eGln)e Hin). (43)

Note that this expression involves a direct product. The fact
that M is normalin G follows by composing the homorphism
5:G—R *® R * with the homomorphism

t{a,B) = (sgnia),sgnif3 )} (44)
of R *® R * onto Z, ® Z, and noting that M is the kernel of
1os.

For our final generator, we define
T X, Y,E)=(YXX.Y—E). (45)

Note that 77 = 1 and that 7 is a Legendre transformation'®
exchanging all conjugate variables.

™) =d(X.Y — E)— XdY
= —dE+ Ydx= —o, (46)

™) = (47)
Thus 7€G with a{r)= — 1 and B () = 1. 7 generates a two
element subgroup whose intersection with M is the identity
since 7¢éM. If fis an arbitrary element of G then either feM

or a(f) = — B{f) by Lemma 3. Then 7feM, since
a(rf) = alnlalf) = —alf)=B(f) =B(B() =B(f)
(48)
We have proved the following theorem.
Theorem 4:
G=Z,8 (R *e 4(Glin) & ,Hn))

=Z,® (R *8Gl(n) e Hin).

The fact that the last product is only semidirect follows
from the remaining commutation relations:

ThaoT =TT pae> (49)
Ly7=7Liye), (50)
Ur=7U,L,. (51)

The connected component of the identity N whichisa
normal subgroup of Gis easily obtained from Theorem 4 by
taking products of the connected components of the factors.
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N=R®;.(Gl"(n)& Hn))
=((R® Gl"(n)) ® ;H(n)), (52)
where we have used (R, + ) instead of the isomorphic group
(R *,). Thegenerators 7,U _,, and L , together with N gener-
ate G, where 4eGl{n), deti4 )= — 1,and 4 ? = I. Since
U_,7U_,=L_,, (53)

however, these generators do not generate a subgroup dis-
joint from N except for the identity unless U _ ,&éN. For n
g\dd, this is the case since then — I&Gl™(n} and we get

G =D,® ; N, where D, is the diheral group Z, ® ,, Z, of
symmetries of the square."' For n even, — IeGl*(n) and no
decomposition of the above form is possible. We have, in this
case only, that

G/N=2,82,9Z,. (54)

IV. INTERPRETATIONS AND CONCLUSIONS

We have found that the group of coordinate transfor-
mations in the phase space of a thermodynamic system hav-
ing

w=dE—YdX (55)
and

7 =dX-dY (56)

AN
as relative invariants is G=Z, ® , (R * ® 5(Gl(n) ® , H{n)))
with generators T}, ,,, L,, U,, and 7, and commutation re-
lations

LA T(b,d,e] = LA(b,d,e)LA s (57)
v,L,=L,U, (58)
Ua T(b,d,e) = T(b,ad,ae) Ua’ (59)
ThaoT=7Tapab- o> (60)
L,r=7L,, (61)
U,r=7U,L,. {(62)

If we require that » and 7 be absolute invariants, the
appropriate group shrinks to G=Gl(n) ® , H(n) with genera-
tors L, and T} 4, and commutation relation (57).

For w, relative invariance is physically a more reasona-
ble requirement than absolute invariance, since @ = 0 and
aw = 0 define the same solution surface. On the other hand,
absolute invariance seems more reasonable for 7, though
relative invariance may be interpreted as a change of units of
energy (see below). If we require absolute invariance of 7 and
relative invariance of w, then by Lemma 3, « = + 1. The
group becomes G = Z, ® ,(Gl(n)® , H(n)). G is generated by
7, L4, and T}y, 4, i.c., the generators of G excluding U,.

If we require the invariance of the origin, i.e., f(0) = 0,
the generators T 4., are eliminated, and we are left with
Z,® (R * ® ;Gl(n)) for relative invariance—relations (58},
(61), and (62)—or with Gl(n) for absolute invariance.

We advance the following interpretations for the gener-
ators:

7: 7 corresponds to a classical Legendre transformation.
As discussed in Sec. II, its interpretation’®'? is to describe
the state of a system using states of its environment, 1.e.,
using Y instead of X.
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U,: U, multiplies both E and Y by the constant factora.
This is exactly the effect of a change in the unit of energy.

L,: Applying L, may prove convenient when dealing
with a chemical system. We can choose the coordinates AX
to involve reaction coordinates and mole numbers of inde-
pendent components. Using AX and the corresponding in-
tensities (4')~'Y (affinities) can simplify analysis."?

Tp.a.: This generator is difficult to interpret. The po-
tential P = E + dX + e, which results from the action of
Ty On (X,Y,E), gives one clue. Note first that

T(b,d,e) = T(b.o.e| T(o,d,o» . (63)

For translations of the form Ty ), if we interpret the Y
variables as intensities representing the environment,'? then
replacing Y by Y + d, i.e., placing the same system into an
environment with intensities Y + d, gives rise to the extra
internal energy d-X. The translation T}, corresponds then
to changing the zero of our intensities. Note that b does not
show up in the potential so an interpretation analogous to
the one for T} 4 is not possible. One is tempted to rule out
transformations of the form T}, , ., by requiring that the ori-
gin in the subspace (X,E ) remain invariant. However, since

TT(O,d,ol T= T(d,o,m , (64)

allowing translations in Y requires that we allow translations
in X. Since T, 4, moves the zero of E, we cannot require the
invariance of X = 0 or E = 0 without requiring Y = 0. It is
possible to rule out translation altogether by requiring the
invariance of the origin in (X, Y,E ). As mentioned above, this
gives the group G*=7Z, ¢ ,(R * @ Gl{n)).

Note that none of the group generators, and hence no
element of G, mix the X and Y variables. More precisely, if
JeGsends (X,Y,E)to (U,V,P) = f(X,Y,E), then there are ex-
actly n variables (U or V') which depend only on X and exact-
ly n variables (V or U) which depend only on Y. In general, P
may depend on all (2n + 1) variables (X,Y,E ). If X and Y are
initially extensive and intensive, there will again be (n + 1)
extensive and » intensive variables after the action of any
J€G. Even when no such initial division into extensive and
intensive variables can be made, e.g., when considering sur-
face effects, the interpretation of the two sets of variables as
parameters of state and parameters of environment remains
valid."? Our conclusion then is that feG does not mix param-
eters of the system and parameters of the environment ex-
cept in the potential function P whose extrema determine the
coexisting states of the system with the environment.

Finally, we note that G does not contain most of the
classical Legendre transforms: namely, those which ex-
change only some of the conjugate pairs of variables. For
example,

gxvXoy o E) = (1%, 2.0, — E) (65)
preserves 77 but not @ since
dxy, — E)—x,dy, — x,dx,

#(dE — p, dx, — x, dx))a (66)
for any aeR *. We can regain the invariance of w by using

instead

g(xl’xz’yl»yZ:E) = (VysX3 — XYk — X)), (67)
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which is more familiar from standard treatments.'? In this
case, however, 7 is not invariant since

dx, dy, + dx, dy,#( — dx, dy, + dx, dy,) (68)

for any BeR *.

Suppose, however, that we are interested only in pro-
cesses for which one of the x; (respectively y;) remains con-
stant. Along the corresponding subsurface of phase-energy
space, we can take the differential form dx; (dy,) to be zero
and ask for the invariance of @ and 7 with such zeros
dropped out. If one chooses the right potential, then it is
possible to eliminate the pair of variables x,, y, from consi-
deration.

Case A: x; = const. In this case, x; and y; both drop out
of w and 7 on setting dx; = 0. The problem thereby reduces
to a problem with one less degree of freedom. This is implicit
in the standard neglect of degress of freedom (e.g., magnetic)
which “don’t participate in a given process.”

Case B: y; = const. In this case, x; and y; do not drop
out of w. However, if we apply rX,Y,E) = (Y, X.X-Y — E),
we get Case A with the potential X-Y — E. We can then
throw away x; and y,, since they disappear from 7*(¢) and
7*(1). Let 7 be the Legrendre involution on the space (X,Y,P)
with #{X,Y,P) = (Y, X,X-Y — P), where X = (x,....x; _,,
Xip1oeeXn by Y =1sVi_ 1 Vi 4 15Yn ). Applying 7, we re-
gain the familiar form:

HYXXY — E)= (VB —x,p.); (69)
the partial Legrende transform of E on the ith variable. The
fact that thermodynamic analyses standardly employ such
potentials for processes in which some y; = const fits in nice-
ly with the above formalism.

In conclusion, we contrast the above group to previous
group theoretic investigations in equilibrium thermodynam-
ics. Koenig'* and others,'>~!” while considering transforma-
tions associated with the Born diagram'® have discussed
contact transformations which also satisfy

E+G=H + 4, (70)

where E,G,H,A are the four classical thermodynamic poten-
tials. The resulting group is generated by permutations of the
variables induced by classical Legrende transformations. In
light of work on generalizations of the thermodynamic Le-
grende transformation,**? it appears that the invariance of
(70) may be too strict a requirement.

Tisza,'® observing that the matrix °E /dx, dx; is relat-
ed to the stability of the system, studied coordinate transfor-
mations that leave the determinant and all principal minors
of this matrix invariant.

As the first referee pointed out, it would be desirable to
see a group theoretic investigation which required the invar-
iance of the first two laws. Weinhold interprets the positive
definiteness of # for stable systems to be the state space ver-
sion of the second law. Thus all our transformations leave
the second law invariant (r changes the sign to negative defi-
nite). Preliminary evidence”? seems to indicate, however,
that not just the sign, but the magnitude of 7, may be physi-
cally significant and will perhaps yield a strengthened form
of the second law.
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Solution of the Dirac equation for the general even power potential with
application to particle spectroscopy
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High-energy asymptotic expansions of eigenenergies, wavefunctions, and Regge trajectories of
the generalized even power potential ¥ (r) = — g°2* N, ;*/in the Dirac equation are obtained.
These general expansions are then used to obtain eigenenergy expansions and Regge trajectories
for the anharmonic oscillator and Gauss potentials. Finally, the relevance of these investigations
to the spectroscopy of heavy quark composites is discussed. In particular, we study the
charmonium spectroscopy for an harmonic oscillator.

PACS numbers: 11.10.Qr, 14.80.Dq

I. INTRODUCTION

The discovery' of the ¢ family of particles marks an
important turning point in the development of particle phys-
ics. Recent development? strongly suggests the existence of
the charmed quark proposed by Glashow and collabora-
tors,and that the ¢ particles are charm-anticharm quark
bound states. Since the states of the ¢ spectroscopy are very
narrow, their masses are accurately determined, and a lot of
their properties are known. The ¢ spectroscopy, therefore,
provides an ideal testing ground for any comprehensive
model of hadron dynamics.

Recently nonrelativistic quantum mechanics as em-
bodied in the Schrodinger equation with a linear potential*®
has been successfully employed by high energy physicists, in
the discovery of ¥ (3 GeV/c?) and 7 (10 GeV/c?) families of
heavy neutral mesons. Because of this success it is important
to go beyond the nonrelativistic approach, which must be
regarded as a first approximation for a complicated hadronic
system.

The complete treatment should incorporate both rela-
tivistic and quantum effects and, in addition, requires a full
understanding of the underlying dynamics of the quarks.
However, the difficulties encountered in bound-state prob-
lems in relativistic field theory suggested that the complete
solution of this problem is rather remote at the present time.
Nevertheless, one might hope to gain some insight by exam-
ining crude approximations which include some of the ef-
fects. For studying the hadron spectrum, relativistic equa-
tions for a linear potential model in the frame work of Dirac
and Klein—Gordon type wave equations have been investi-
gated.®” In certain quark-confining potentials,®'? the Dirac
equation has also been solved with scalar potential functions.
In the MIT bag model, free relativistic quarks are confined
in a hadron bag of finite radial dimension by the conditions
that the quark density vanishes on the bag surface and the
quark pressure balances the natural pressure of the confined
bag. Thus, by construction, the quarks can never “leak out”
of the bag. From a purely phenomenological viewpoint, '
the meson spectra using a harmonic-oscillator potential has
been calculated in the Klein—-Gordon equation. A semirelati-
vistic quark model for mesons has also been using a square
well potential.'*

The general even power finds wide applications in po-
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tential theory since such well-known potentials as the har-
monic oscillator, Gauss potential, and anharmonic oscilla-
tor potentials (with even anharmonicities) may be derived
from this as particular cases. The general even power poten-
tial has already been studied in the Schrodinger frame-
work"® and also in the Klein—-Gordon framework.'® Moti-
vated by the desire to complete the chain of investigating this
potential for both the nonrelativistic and relativistic parti-
cles, the present paper deals with the derivation of the high
eigenenergy and Regge trajectory expansions for a general
even power potential in the Dirac equation. This has been
done in Sec. II of this paper. In the present investigations, the
perturbation procedure explained in Ref. 17 has been used.
Applications of these eigenenergy expansions to the Gauss
and anharmonic oscillator potentials have been given in Sec.
III. In this section meson spectra of charmed quarks is also
investigated using the harmonic oscillator potential. In Sec.
IV, some concluding remarks have been given.

Il. ASYMPTOTIC EIGENSOLUTIONS FOR THE
GENERAL EVEN POWER POTENTIAL

The two coupled equations for the radial parts of the
Dirac equation can be written as

4 ofi— Ep) 4 (E—m—virlig =0,
dr r

P k (2.1)
—(rg)+ —(rg) = [E+m—V(nl{rf)=0,
dr r
with parameter k defined as
k=F(j+y for I=j+1. (2.2)

Here / is the orbital angular momentum designation in non-
relativistic nomenclature.
Further setting
E’=m?*+ 4«2, K=k,
Py 2:3)
'z

z= —2Kr,

and
rglr) = e+ X (r),

rfir)=e~rx(r), 24)

we obtain for rg(r)
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ZX + [Z(k +1)— 1t zd Vi) —z|X We now consider the potential of the form
(E4+m—V) 2K dr

Vir= ~g 3 Ny, 26
_ [(k+ 1) — (V2 — 2EV) L gzj;o * 2.0l
4K2 (E4+m—V)
X( _z 2%+ 1) av ] Y—0 2.5) where the coefficients &, ; can be negative or positive.
4K 2K - ) Substitution of (2. 6) in (2.5) yields

ZX + 2k + 1) —Z}X — (k+ 1)X

- 2K o ; 2K N 2P+
ZI2JN, ) — 1! 2jN, N, ) — 1pPr2 -t
Z (2K)21+’“E+m 2 ) =1) TE 2,,;,( INzp Nyl = 1) (2K)2"
i+1 Ny, . K (2k D
—[(Mj—ZENz,-)ZZJ _ 2KV Ly AKREA N )
2K (E + m) (E + m)
ZAp+h ( 2j(2k+1))] ]
1— Xi. 2.7
(E+m)2 Z e 2’(21<)f’~‘ Z(2K ¥ 27
Here,
M= 3 Nyj_yNa (2:8)
j=o0

and have taken
1 1 14 )
~ 14 2.9
E+m—V)" (E+m\  E+4+m 29
as a first approximation. In the limit |K |-, (2.7) may be approximated by

ZXW 4 Rk +1)—zZ]XY — (k+ )XV =0, (2.10)

A solution of Eq. (2.10) is

XV =¢(a,b;2), (2.11)
where ¢ is a confluent hypergeometric function and

a=k+1, b=2k+1). (2.12)
This solution will be normalizable bound-state wavefunction if

a=-n forn=0,1,2,... (2.13)
For the complete solution we set

k+1=a+A4(K)/2K= ~n+A4(K)/2K. (2.14)
The quantity in Eq. (2.14) remains to be determined; substituting (2.14) in (2.7), we have an equation which can be written

0 2
DX =AKMh+ z oK )lz,+ : {[(E?'fm) 20N, (— 12 4 Eszgo 2N, N, (= 1+ 2= (2_2}(’1)*2_’:’ X
_ o4, — 22w, 2i+1 3 2K jN,; 2 4K 2k + 1)N,; 2
2K (E +m) (E+ m)
1 2 N z<p+ivl(l_ 21_(2"_+_1))]X] (2.15)
(E + m) 2Ky Z2K'Y

where

.@"=z§z—22-+(b—z)%+n (2.16)
and

h=1/2K. (2.17)

Equation (2.15) is now in a form suitable for the application of perturbation method. As a first approximation to X we
have (apart from an overall normalization constant)

X=X"V=4¢. (). (2.18)

The first approximation then leaves uncompensated terms amounting to
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2P+

- . 12 +2j-1
7 3, 2N, = 1 T

(2.19)

1 2K . ) IK
RV =A4h+ { 2iN, (— 1P~ 122 4+
E (2K)21+1 (E+m) J 21( ) 4 E
f+1 2K jN, ; 4K 2k + 1IN, .
‘[(%—ZENH)Z“ TV RS e AL TIEYEY
2K (E + m) (E+ m)
(p+)
2 2P+ (1 2](2k—+—1))]¢"]
(E + m)2 (ZK)""1 2Ky
For convenience we set ¢, (z) = ¢ (a,b;z) = ¢ (a) and write the

recurrence relation for ¢ (a) in the form

z¢ (@) = (a,a + 1)$ (a + 1) + (a,a)é (a)
+ (@,a — 1)p(a — 1), (2.20)
where
@a+1l)=a= —n=k+1—A4h,
{a@)=5b—2a=2k+n+ 1)=24h, {2.21}

— 2k +2+n)=n-24h.
By repeated application of (2.20) we obtain the following

general relation:
4= 3 S.laa+idla+i),
j= —m

where the coefficients S, (a, @ + ¥) satisfy the recurrence re-
lation

(a@—1)=a—-b=

(2.22)

Snla,a+y)=S, _aa+y—1la+y—1la+y)
+S,._1l@a+ya+y,a+y)
+S,._aa+y+lla+y+1,a+7),

with (2.23)

Sola, a) =1,
all Syla,a+i)=0 fori#0 (2.24)

and S,.(@,a+7y)=0 for|y|>m.

By means of term-by-term differentiation of confluent hy-
pergeometric function ¢ (@) yields

¢(a,b;z)=%¢(a+1,b+1;z);

this relation when combined with the relations between con-
tiguous functions gives the following expression:
2 (a, by z) = alé (a + 1, b; 2) — & (a, b; 2)]. (2.25)

The expression for R 'V with the help of (2.22) and (2.25) can
be written
n _

R _j:zo —h
+ [a’a+2j+3]2j+1¢(a+2j+3)+"'
+[a,a -2 —3]y, 14la—2/-3)
+la,a—-2j—4],;, ,dla—2j—4)},

Yrila,a 42441, 6@ +2j+4)

(2.26)
where

{a,a]l, =4 + D;AS\{a, a),
[aaai(2j+4)]2j+1 =h3['ljszj+4(a»ai2ji4)
—(?jS2j+3(a+l,aiZji4)],
[a,a+(2j+3)];,,.
= —hC[S,sla+1,a+2j+3)
—Sjes3laax2j+£3)] =J;8, 40 at2j+ 3)
+ PS5, 3@ a+2j13)},
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la,a+ 27+ 2]y,
= —h {kz[c}52j+3(a+ La+2;42)
—CS4sla,a+2j+2) T8, 4@ a+2j+2)
+PjS2j+3(a»aizji2)] “‘Ijszj+2(a,ai‘2ji2)],
[a!ai(2j+l)]2j+l
= —h{h?[CS;; sla+1a+2j+1)
_Cj52j+3(arai2ji‘1)“stz,'+4(a’ai2ji’ 1)
+ PS5, sl@a+2j+1)]
+B:S,;1la+1l,at2j+1)
—B,5,41@a£2j+1)—- DS, ,(@,a+2j+ 1)
_IjS2j+2(arai2ji1)+Ljszj+1(a’ai2ji1}},

1

[a,aizj]21+| :7 [4,8,; i@+ 1,a+2))

+ (F; + H))S, (a,a + 2 )]

—h{BS,, a+1,a+2)
(B/ +D/ Lj)SZj+1(a’a t2))

— 1S, 2la,a+2))

+h[CSy; e+ L, a+2))

- (C, _Pj)Szj+3(a»ai 2j)

“stzj‘+4{asa iZj)]},

)]2j+l

[a,a+(2j—1
1 -
=7[AjSzj_l(a+1,ai2]+1)

— (4, -G, —K))S,,_,(aa+2jF1)
+ (F, + H))S,,(@,a £ 2jF 1)]
+h[BSy; e+ 1,a+2jF1)

— (B, —D; —L))S,,, (@ a+2jF1)
+ 1S, 2@ a+2jF1)]
+h°[CS,; a+lLa+2jF1)
—(C, —P)S,; ,slaa+2jF 1)
+J,8,; 4la,a+2jF1)],

1
[a’a]2j+] _ —

h
+ (F; + H})S,;(a,a)] + h [B;S,; . 1la+ 1,a)

— (B, =D, — L)Sy,. (@, ) + LSy, , 5 (a a)]
+h? [C1S21+3(a+1 a)— (CJ PJ)S2,+3(0’0)
+ ;55,4 4la, a)].

[Ajszj—l(a‘+‘ 1, a)_(Aj —Gj _K;)SZj—l(a’ aj

(2.27)
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The constants 4;, B;, etc. have the following meaning: H;, = g*(jNoN,,)/(E + m)?,

A; =g (2jnNy )/ (E + m) — g* 2 iNoN )/ (E + m)?, I, = g*(jN,N, ,)/(E + m)?,

B; = g'(2jnN,N, /(E + m), J; =8 (JNNo,))/(E + m}?,

C; = g*(2jnN,N,,)/(E + mP, K[ =g*2k + 1)2 NN, )/(E + m),

D; =g*(2EN, ;) — &'M;, L, = —g* 2k + 1)2jN,N, ,)/\E + m)?,

Fy = g(jN2,)/E + m, P = —g*(2k + )2 NN, )/(E + m)2.

G; = g2k + 12N, ,)/(E + m), (2.28)

We now observe that &, (a + g} = qé (a + g) so that a term i (@ + g) may be removed by adding to X ¥ the contribu-
tion {12/q)¢ (a + g) except, of course, when g = 0.
Hence the next contribution to X " becomes

,a+2j+4),; ) ] ;
[a,a + ]._ ]2J+1¢(ai2ji4)+[a a+2j+3);,,
+(2j+4) +(27+3)

X = gohm [ $lat2j+3)+ ] (2.29)

This contribution leaves uncompensated a sum of terms R ', which again leads to X ®. Repeating this process successive-
ly and adding these contributions to X ! yields

X=X"4Xx@ 4 x0 4. {2.30)

However, (2.30) will be a solution of our equation only if the sum of all terms containing ¢ (@) in R ¥, R @, ... left
compensated so far is set equal to zero. Thus

O=h[a,a~]l+h2[[a’a+1]‘1[a+l’a]1+ [a’a_l]l[la—19a]1
[a,a+1]1[a+1,a+1],[a+1,a],+ [a,a — 1],[a — 1;a—1],[a—1,a],
1 1

+h3[[a,a]3+ ]+0(h“). (2.31)

The expansion (2.30) is then an eigensolution and (2.31} the appropriate secular equation which enables us to calculate 4
and hence the eigenenergy for large X or small 4. Explicit calculation of terms upto O (k ®) yields the following expression for
the eigenenergies:

1
14+Ph*+Pih*>+Pih*+ Ph>
X[(Psh*+Pih®> +Pih* + Pih®) + (AR (Psh> + Pioh® + P{ h* + P11h7)
+(ARPP k2 + Pk ®+ Pish®) + (AR)(Pich> + Ph* + Pish°)], (2.32)

n+k+1=4hr=

Pl=[—(4+4n4, +2(G,+K{)+(2+4n)F, + H)
+2D, +(1+ 6m)D2],

P} = [(4 + 8n)d,D, — (10 — 361 — 3n®)(F, + H,\D,

—4(G, +K;)Do+4nD(2)],

Py=[—(28—12n—24n%B, + (4 — 12n — 120}(L, + D, + G, + K })
+ (12 — 4n + 60n% — 120m3)I, + F, + H,) — (28 + 36n — 24n*d,
+(4—8n—4n*)D3 — (8 + 8n + 56n* + 8n*)DJ — (8n — 16n%)],

P, = [ — (176 + 76n — 316n* + 480n° — 224n")I, D,

+ (108n + 792n2)(L, + D,)D, + (154 — 16n — 40n?)B,D,],

P =[(1+ Sn)d, + F, + H,) — nD%],

P, =[—(2+44n+ 3n*4,D, + (20n — 50n°)(F, + H,)D,
— (4 —4n)(G,+ K {)D, — 4n’D}],
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P; =[(6— 12n — 6n* — 3n%)B, — (6n + 52n2 + 36n® — 176n*)(I, + F, + H,)
+ (6 + 3n — 6n*> — 3n*)4, + (8n + 8n* + 32n°)D 3 + 8n*°D] ],

P} = [(224 + 176n + 20n* — 20n® + 352n* — 224n°)1,D,

— (24n + 3602 + 336n%)(L, + D,)Dy — (24 + 40n + 90n* + 88n*B, D, ],

Py =[4F,+H)+(2+6nD]],

Py =[—44,D, — (12 — 4n)(F, + H,)D,],

P, = [(24 —24n)B, + (12 +24n)(L,+ D, + G, + K )
+ (44 — T2n + 12n°)I, + F, + H,) + (24 — 24n)A,

+ (4 + 8n + 4n*> + 10n°)D ] + (16n + 16n°\D + 8],
P, = [ — (352 — 88n — 336n%)1,D, — (72 + 476n)(L, + D,)D,

— (136 — 76n)B,D, + (6 + 61 + 18n3D 3 — (3n — 3n* — 18n°)D ],

Piy=[—R+2n+4n’D]],

Ply=[—32B,+ 8L, +D +G,+K;)+ (48 + 64n)(l, + F, + H,)

— 324, + (4 — 8n + 181D} ],
Pis = [ — (384 + 640n)I,D, + 176B,D,],
Pis=[(2+4nD2],
P, =[16[1,+ F,+ H,] +(4+8nD3}],
P, = [1281,D,].

Expanding the denominator of (2.32) in powers of 42 and

iterating for (44 ), we get
k= —n—1+ [h¥Ps)+h* P +h*P; —PiP})
+h3Py —P{P; —P;P;)] +0(h°). (2.34)

Similarly the eigenenergy for the wavefunction (r ) can be
evaluated by setting in (2.34)

n=n-1, n=012,... (2.35)
It may also be noted that for the wavefunction (r ) the value

of b is

b= 2k. (2.36)

FIG. 1. Ground state Regge trajectories for the Gauss potential using pa-
rameters m = 1, &® = 1, and different values of coupling constant g2.
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(2.33)

r
lil. APPLICATIONS OF THE GENERAL EIGENENERGY

EXPANSION

We now apply the eigenenergy expansion (2.34) to the
two cases.

A. Gauss potential

The Gauss potential is given as

Vin= —ge ", (3.1)
so that
N, =(—1/a¥/j!. (3.2)

Hence the eigenenergy expansion is obtained directly from
(2.34) wherein the terms P, terms are given by (2.33). Various

-

& —

FIG. 2. Regge trajectories for anharmonic oscillator for different values of
n. Other parameters are N, = — 0.05 GeV, N, = 0.0005 GeV?,
N, =0.0005 GeV>®,and g = 1.
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TABLE L. Predicted masses in GeV for mesons with charmed quark pairs
with the oscillator potential of parameter N, = — 0.05 GeV, ¥, = 0.0005
GeV, g=1and m = 1.5 GeV.

Meson mass (cc ) GeV

n ! Theory Expt.

0 S 3.096 3.097 + 0.002
1 S 3.69 3.686 + 0.003
2 N 4.12 403 +001
0 P 346 3.446

1 P 4.00 3.876 99

2 P 4.35 4,147 3

N ,; coefficients occurring in (2.28) are defined by (3.2) for
this case.

The ground state Regge trajectories for the Gauss po-
tential have been shown in Fig. 1.

B. Anharmonic oscillator

Next we consider the potential

Virj= —g(No+ Nor’ + Nor'). (3.3)
The eigenenergy expansion is given by (2.34) where the terms
A;, B;, etc., are obtained by putting j =0, 1, 2.

The Regge trajectories for this potential are shown in
Fig. 2.

C. Charmonium spectroscopy

We study the potential

V= —g(No+Nor). (3.4)
Here in the eigenenergy expansion obtained from (2.34) the
terms 4;, B;, etc., are obtained by putting j =0, 1.

In fact, for obtaining the Regge trajectories for the
above potentials and for calculating the meson masses, Eq.
(2.32) (which is a fourth power equation in A/ ) has been used.

The meson masses are given in Table I and Regge tra-
jectories for the same are shown in Fig. 3.

nEo
1
n=2

1]

1 2 3 4 5 6 T

E -
FIG. 3. Regge trajectories for the harmonic oscillator potential in the Dirac

equation with parameters N, = — 0.05 GeV, N, = 0.0005 GeV>, g =1,
and m = 1.5 GeV.
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TABLE I1. Bound state energies for different values of reduced mass ( )
with N, = — 0.002 GeV, N, = 0.0005 GeV*, and g = 1.

I E
0.0 1.0206
0.2 1.33
0.4 1.63
0.6 1.84
0.8 1.99
1.0 2.958
1.2 3.31
14 3.89
1.6 4.986
1.8 5.52
2.0 6.98

IV. DISCUSSION

It is well known that in the nonrelativistic framework
the linear potential yields the most rapidly rising trajector-
ies. Similarly, oscillator potential in this frame work also
yields the linearly rising trajectory. The same sort of behav-
ior was observed for the Regge trajectory in the Klein—Gor-
don frame work.'® The Regge trajectories obtained in Fig. 3
also appear to be nearly parallel; the behavior of these trajec-
tories, therefore, is not altered for the case of the Dirac equa-
tion. The meson masses with charmed quark-antiquark
have also been calculated using this potential (see Table I),
and these results are in very good agreement with those ob-
tained experimentally. Although numerical methods have
been extensively used in this type of work, it has been
thought worthwhile to obtain theoretical expressions for the
eigenenergies and wavefunctions using a perturbation the-
ory also. In Table IT we have calculated bound state energies
for different values of reduced mass y. From this table we
conclude that it is possible to generate bound state mass
spectra of a system of both light and heavy quarks in an
effective harmonic oscillator potential in the Dirac equation.
[For any value of i the eigenenergies are found to be pure
real; therefore, it is possible for the harmonic oscillator po-
tential model to explain relativistic quark confinement.] It
may be relevant to point out here that a similar observation'®
has also been recently made.

The Regge trajectories for the anharmonic oscillator
with #* anharmonicity (see Fig. 2) are also nearly linear in the
range of E considered. The ground state Regge trajectories
for the Gauss potential (see Fig. 1), though not linear, have
nearly equal slopes.
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We study a topological classification of gauge potentials based on an examination of the Chern—
Simons surface term C (U) at appropriate boundary components of the space-time manifold when
the potential approaches a pure gauge dU U ~' at the boundary. We derive an explicit local

formula for a 2-form H (U ) such that C(U) =dH (U ).

PACS numbers: 11.15. — q, 02.40. + m, 02.20.Sv

I. BASIC NOTATIONS AND CONVENTIONS

We consider a pure Yang-Mills theory' in Minkowski
space. The gauge group G is assumed to be semisimple and
compact, for simplicity. In an Appendix, our main result is
proved without redundant assumptions. The Yang~Mills
Lagrangian is (summation convention)

L= —1G% G", (1)

148
where the gauge field G, is expressed in terms of the gauge
potential 4, as follows:

Gi, =34 -3, 4% +gfi A 4. (2)
The quantity g in Eq. (2) is an arbitrary (real) coupling con-
stant, and the quantities /7, are the structure constants of
the Lie algebra ¢ of the gauge group

[T, T, ] =ifo T (3)

The Lie algebra (or color) indices (a, b, ¢, ...) are lowered

(raised) with the aid of the Killing metric g, (g“°), where
guh = - :1[(' ff‘;(l (4)
and
g8y =8¢ (5)

Our Minkowski metricis g, (u, v =0, 1, 2, 3) with (g,,,.)
=diag(l, — 1, ~ 1, —1).

It is convenient to use a matrix representation for the
gauge field G, and potential 4, , respectively. Thuslet { 7, }
(@ = 1,...,dim ;) denote any suitable set of Hermitian matrix
representatives of the Lie algebra generators (3). Then we
write

A, =A4°T, (6)
from which follows
G;U' = a\'A;t - a;zA\' - Ig{A,u > A\] (7)

with the aid of the definition (2) and the commutation rela-
tions (3). Finally, using the totally antisymmetric density
€% (convention: €”'*' = + 1}, we define the dual gauge
field G **" as follows:

g f3
G*;u — %6“‘“ Ga/f~ (8)
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Il. TOPOLOGICAL DENSITIES AND CURRENTS

As is well known,*™ a basic topological density v(x; 4 )
(the second Chern class) can be formed out of the gauge field
G, and its dual:

vix;d)= —(g°/3277)G,,, G *". (9)
The definition (7) of the gauge field in terms of a potential 4,,
implies the Bianchi identities

V(( (A )G/})' + V/? (A )G7'11 + V,(A )Gai = O? (10)
where V {4 ) denotes the covariant derivative
V A)=d, +ig[d.. ] (11)

The Bianchi identities (10) expressed in terms of the dual
gauge field are as follows:

vV, (A4)G* =0. (12)
The identities (12) guarantee that the topological density
v(x; A ) given by Eq. (9) is insensitive to local deformations of
the potential 4, :

Svix;4) g

84y 87
Thus the topological density v(x; 4 ) depends only on the
large scale properties of the potential 4, . An explicit realiza-
tion of this fact is the representation of v(x; 4 ) as a divergence
of a topological current K,

8¥x — IV (4)G* (X)), =0 (13)

vix;4)=3d,K"4), (14)
where
Kid) = & evarg s (G M)~ Lo )
32772 a Pra 3 bea’r [ ¥
(15)

The representation {14) is, as such, well known in the phys-
ical literature.”™ Equation (15) is a particular case of a more
general formula given in Ref. 5.

The main purpose of this paper is to establish a further
topological classification of gauge-field configurations, us-
ing Egs. (14) and (15) as a starting point.

To this end, we consider gauge transformations of the

© 1983 American Institute of Physics 2528



current (15). The potential 4, transforms as follows under
gauge transformations U:

U
A4,— A/ =U4,U"" + (i/g)3, U)U ~. (16)

Then from definition (15) folows,

U

K¥(d) — K4 Y)
— KM )+ 5 ety (U9, U, 4p)
167

+——1—56“(13)’(U~‘18a U, [UflaBU’ U"&,,U]),
967" '
(17)

where (4, B ) denotes the Killing inner product (4),
(4, B)=g,,A“B"=4,B". (18]

The divergence of the topological current K * is gauge invar-
iant. Thus the divergence of the U-dependent terms of the

right-hand side of Eq. {17) ought to vanish identically. The
last term on the right-hand side of Eq. (17), i.e., the quantity

C"(U)Eééé""”’/(U”d, U, [U'9,U, U3, U] (19)

is not manifestly divergence-free, however. In what follows,
an equivalent formula will be given for the quantity C#(U),
which manifestly demonstrates the vanishing of its diver-
gence. The formula in question, which will be given shortly,
also demonstrates that C*{U ) has a topological significance,
as a characteristic of the gauge transformation U. This fact is
not unknown in the mathematical literature; quantities re-
lated to our C#(U) are known as the Chern—Simons secon-
dary characteristics.”

We demonstrate first that C*(U ) indeed is a kind of
topological current. Consider variations &, of C#(U). It is
not difficult to verify that

8,CHU) = (1/32)e"*?73,
X(SU-U ", [3,U-U ", 3,U-U ~']). (20}

This means that the variation of the integral of C*(U) over a
three-dimensional submanifold ¥ in Minkowski space can
be written as an integral over the boundary d¥ of ¥. Thus in
this sense, C#(U ) is insensitive to local deformations of U,
just as the topological density v{x; 4 ) defined previously was
insensitive to local deformations of 4. Hence the quantity
C*{U) can be considered as a topological current for gauge
transformations U. Said in other words, for fixed boundary
conditions of U on d¥, the integral of C* characterizes the
relative homotopy class (with respect to V') of the map U.

Equation (20} [and of course the fact that d, C#(U) = 0]
indicates that C*{U } ought to have a representation of the
following form:

CHU)=4d,H"U), (21)

where H ““ is antisymmetric under the interchange of # and
a, that is, H is a 2-form. If U is defined in a star shaped
neighborhood D of ¥in Minkowski space, the existence of H
in D follows from the Poincaré lemma. We shall, in the next
section, show that there exists a simple local expression for
H. In general, the existence of H is guaranteed if the third
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cohomology group of V vanishes. This happens, for exam-
ple, when ¥ =527 (ICR an interval} which is a natural
space to study in the Lagrangian formulation of Yang-Mills
theories. In this case it is namely reasonable to assume that
the potential 4, approaches an exact gauge U ~'d, U at spa-
tial infinity (represented by the sphere S?) in a given time
interval 1.

lll. REPRESENTATION OF C*(/) AS A TENSOR
DIVERGENCE

We shall now give a detailed discussion of the represen-
tation (21) announced in the previous section.

To begin with, a few restrictive assumptions are stated.

We consider a suitable three-dimensional surface Vin
Minkowski space M,. By a gauge transformation U {x}, x€V,
we mean a C2-mapping from V into the gauge group G, U:
V—@G. In fact, in order to write differential forms in a con-
venient coordinate form, we assume that U (x) is defined ina
small open neighborhood of ¥. More specifically, G is here
identified with a particular (unitary) matrix representation,
corresponding to the Lie algebra representation { T, | dis-
cussed previously. Further, we assume that U has an expo-
nential (Lie algebra) representation,

Ulx) =e*"™, xeV, (22)
where Z: V—4 is a C*-mapping into the Lie algebra &, which
here again is identified with the matrix representation dis-
cussed above. A necessary condition for the existence of the
lifting Z of U is that U as amap from V to G is homotopically
trivial (homotopic to a constant map). The Hermitian matri-
ces Z (x) can be written as vectors in the linear vector space
spanned by the 7,’s,

Z(x)=Zx)T,, Z°real. (23)
The basic quantities occurring in the definition (19) of the
topological current C*(U) are the following:

W,=U""a,U. (24)

The quantities /W belong to ¢, i.e., can be written as in Eq.
(23). Now we wish to express the quantities W, defined by
Eg. (24) in terms of the g-valued quantities Z (x) occurring in
Eqg. (22). This is accomplished with the aid of the Magnus
formula®:

W, =(1—e *%)/ad Z)d,Z, (25)

where ad Z (Y )=[Z, Y] for Z, Ye,.
The operator function in Eq. (25) is defined as a power series:

n

-1 & x
xS (m1r
After these preliminaries, we are ready to state our main
result.
The topological current C#(U ) defined in Eq. (19), viz.,

(26)

CHU) = (1/9677)e "W, [Ws, W, 1), (27)
has the following equivalent representation:

CHU)=d8,H"YZ), (28)
where

H"(Z) = (1/487)e " (h (— iad Z)3,Z,3,Z). (29)
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The linear operator # ( — i ad Z ) in Eq. (29) is defined by its
power series

& inh x — x
Py x _sin
W= 2 2k + 3) X

In order to verify the validity of the representation (28), one
needs the following result:

d,(ad Z\"d,Z
=(ad Z)"3,3,Z

m—1

+ S (dZ)[d,Z (adZ)"~* 19,2 ],
k=0

2k + 1

(30)

m=12,.., (31)

the validity of which can be established by induction on m.
One further needs the following symmetry property:

((Z, 4}, B)= — 4, [Z, B]), (32)

valid for any Lie albegra ».

The actual derivation of the result (28) and (29) is given
in the Appendix using compact notation, i.e., differential
forms.

To the best of our knowledge, the general representa-
tion (28), (29) has not hitherto been given in the literature.
There is one special case of Eq. (29), however, which has been
introduced and used extensively by Jackiw’ for the purpose
of topological classifications, namely, the case of G = SU/(2).
In this case we use the fundamental representation 7, = io,
(@ =1,2,3), where the o,’s are the Pauli matrices. The SU(2)
Lie algebra is

[T,,T,] =iT, (a,b,ccyclic), (33)
so that

f;zbc = 2€abc’ (34)
where €, is the totally antisymmetric permutation symbol.
The Killing metric g, is the following:

2 a=5b,
= 35

8a» {0 a #b ( )
For

Z=2Z"0,, (36)
one establishes easily that

(ad Z)* *'9,Z = (| Z||*)* ad Z3, Z, (37)
where

1Z\*=(Z, Z) =g, Z°Z". (38)

Using Eq. (37), one obtains from Eq. (29),
1 eitaﬁy(”Z lI/v2 — sin(||Z II/\/?)>
4877 (\1Z1|7v2y
X fure 205 Z°)3,Z7) (39)

which, allowing for differences in notation, is exactly the
formula given by Jackiw. Qur general formula thus general-
izes Jackiw’s SU(2) formula to any semisimple and compact
Lie group (in fact any finite-dimensional group; see the Ap-
pendix).

Finally a brief comment on the use of our general result
(28) and (29). We stated previously that the quantity C#(U ) is

HM(Z) =
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a topological characteristic of the corresponding gauge
transform U. Thus in studying the class of gauge potentials
A, which approach a pure gauge at (space) infinity, one finds
that these potentials fall into homotopy classes correspond-
ing to the (relative) homotopy classes of the pure gauges, i.c.,
gauge transformations U. All this has [for SU(2)] been ex-
plained fairly explicitly by Jackiw, quoted previously. Our
general representation enables one to carry through similar
explicit arguments in general.

APPENDIX: DERIVATION OF C# = g H"

Let 2 be the Lie algebra of a Lie group G. Consider a C2-
function U: D—G, where D is a domain in R*, We assume
that U can be written in the form U (x) = exp Z (x), where Z:
D>z is a C>-mapping. We denote 4 = dU U ~'. According
to the Magnus rule

A=flad Z)dZ, (A1)
where
flx): —HZO( +11)' "=ex;‘. (A2)
Consider the 3-form
=4, [4,4]), (A3)

where (-,) is the Killing form on . We claim that C = dH,
where

H=2dZ, h(ad Z)dZ),

Ad

A (x): = (1/x?)-(sinh x — x). (Ad)
Since 6,A# —d,A, —[4,,4,] =0, we have

=(d,dA). (A5)

According to (Al)

\ ll. = a Z
- n§1 kgo (n + 1)'

X[0,Z,(ad Z)" "~ '3,Z] + f(ad Z)d,d,Z. (A6)
Combining (A5) and (A6),

c= Z(A > i e 20z, (adZ)"*""dZ]).

n=1k=0
(A7)

(ad zys,zZ

(ad Z )

Using the property (32) of the Killing form, we get

C= 2( D (1+1 a2 )az, )

1=0

. %L & e 1 1 Y k4l
_2<dZ’Z 2 2 (I + 1)t (n+1)!( Yiad Z)

[=0n=1k=0

% [dZ, (ad Z)" ~*~ 'dZ ]). (A8)

Since
(dZ, (ad Z¥[dZ, (ad Z }'dZ ])
=(— 1¥((ad ZYdZ, [dZ, (ad Z)'dZ ])
= —(—1P([dZ, (ad ZYdZ ], (ad Z)dZ)
= —{—1P*9YdZ, (ad Z)[dZ, (ad ZYdZ }),
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we can write the right-hand side of (A8) as follows:

1 1
Zy
(d DT
1 1

(= 1f(ad Z)**'[dZ, (ad Z)" = ‘dZ])

N R/ DL dznflcfle, dzk+le
+(dZ,2———(l+m(n+”!( =1 ad Zy'(dZ wd Z )+ aZ )

{nk
dZ o m—1 1 1
—( ’mZ:IJ'Zo /Zo(l—l-l)! (m—l+1)’

m-1m--j-1 1 1

+(dZ,Z 2 2 I+ 1)l (m— I+ 1)

m=1j=0 =0
Using the fact that
j 1 1 m—j=1 l 1

,;0 7+ 1 (m—l+1)!(—1) N ,;0

{m +2)!

=0

(I + 1) (m — 1+ 1)1

(S g

(— 1)(ad Z)'[dZ, (ad Z)" '~ 'dZ ])

(— 1)"~'~ad Z)[dZ, (ad Z)" 'f"dZ]). (A9)

(=i

m+2))
I+1

- (miz)! (( - 1)1(7:11) Hl+(- lVA(::;) —(= ”’")

_1=(=1"
T (m+2)
where ({) = nl/k(n — k), we get

(A10)

o (dZ, $ s 1= g z)(az, @ zy - 'az ])

(m + 2)!

m=1 j=0

< 1-(=D m

- Z(dZ, d(h(ad Z)dZ ))

=2d (dZ, h(ad Z )dZ)

=dH.
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On the hydrodynamic self-similar cosmological models
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The hydrodynamic self-similar cosmological models are considered. A new solution is presented.
Of all the self-similar solutions, only the Newtonian analogy of the Einstein—deSitter model

represents an expanding universe.

PACS numbers: 95.30.Lz, 98.90. — k

Self-similarity has long been used in hydrodynamics to
solve degenerate problems or to find asymptotic solutions.'
Recently, Henriksen and Wesson? have discussed some
Newtonian and relativistic self-similar cosmological models.
We first briefly sketch Henriksen and Wesson’s approach of
the hydrodynamic models and find a new self-similar solu-
tion. Then we make some interesting observations of the self-
similar models.

The governing equations for the spherical symmetric,
isentropic fluid flow in an internal gravitational field are the
continuity equation, the momentum equation, the energy
equation, and the gravitational equation:

9 P _ LI
a Vo oo
o, w_, 1
or or p ar

(1)
a., _, 9
E(PP )+var(pp ) =0,

o, 0 _ _ 28

ot r r
where p, p, and v are, respectively, the local density, pres-
sure, and velocity. g is the local gravitational acceleration.

If we assume that the Newtonian gravitational constant
G is the only constant of nature and there is no characteristic
velocity, we can introduce the dimensionless qualities 7, Q,
¢, and V as follows:

p=WA/r°mE),

3

v=(r/t)V(£),

2

g= /M E)  p=U/P Q) 2
where

&= GAatY/r? (3)

and 6 is a constant of order unity. The parameter A is intro-
duced so that £ is dimensionless. In terms of the dimension-
less variables in (2) and (3}, Egs. (1) become

2—6V)en' =(6—3mV + 5qV",

Q_oviEv =g+ v—p2 4 =20 80"

2—6V)d' =213V, ! 7 @)

(2—9V)§Q’=(2+0V)Q+(2~0V)ﬂ$i'
—(24+v6)QV,
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where primes denote differentiation with respect to £.
Two solutions of Eq. (4) can easily be found. If we as-
sume that ¥’ = 1 and 8 #2, then v = { and

7I=770§—(9-3)/(8-2j’ ¢=¢0§ —l/(Z—B]’
Q=02 (5
where the constants 7,, ¢,, and Q, are related by

Qo = (2 — 0)pono/4. If we assume that ¥ = 3and 6 #3, then
v =4%and

n=n/ é=¢ Q=0/¢ (6)
where the constants 7, ¢,, and Q, are related by
Qo = 70(2 + 94,)/18. When ¢, = — 3, Q, is zero and solu-
tion (6) reduces to

Solutions (5), (6), and (7) were described in Ref. 2. In-
stead of assuming V' = constant, we note that for 8 = 3,
V s#constant and Q = 0, Eqgs. (4) are greatly simplified:

(2 = 3V)en' =3&nV",
2=3VEV' =¢+V—-V? (8)
§¢'=¢.
It can be shown that Egs. (8) are satisfied by the following
solutions:

V=VE, ¢=—1 n=mn/2-3¢) )
where 7, is a constant.

The expression for 7 indicates that solution (9) has a
singularity at £ = §. In fact, £ = §implies ¥ =3 When 6 =3
and ¥ =3, the system of Egs. (4} is undetermined. It seems,
therefore, the singularity is due to the introduction of self-
similarity in Egs. (1).

In dimensional form solution (9) becomes

V= AG p=__ﬂ_____
r’ 273—3tr\/G/1r,

GA

g 52 P=0, (10)
where 7, is a constant. Solution (10) is well defined when
¢t = 0 and is, therefore, not consistent with the big-bang the-
ory.

We now make some observations of the self-similar so-
lutions. Using Eqgs. (2) and (3), we can rewrite solution (7) in
the following dimensional form:
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v=2r/3t, p=1/Gt: g= —-2/9% p=0. (11)

The constant 7, can be determined by the additional require-
ment that the function R (¢ ), defined by

- LR (12
R dt
satisfies the equation
2
(ﬁ) =37 g2 (13)
dt 3

Then 7, = 1. Eq. (13) is simply the Friedmann differential
equation with zero cosmological constant and zero curva-
ture.? It is readily shown from Eqs. (11) and (12) that
R = R,t?'* and pR * = constant. If fact, solution (11) with
7o = im, is just the Newtonian analog of the zero-curvature
Einstein—deSitter universe.

If we introduce the function H defined by v = Hr or
H = (1/R)(dR /dt), then H = 3, and H satisfies

4rG
Ly S T LA (14)

dt 3
Solution (11) is seen as identical with the homogeneous and
isotropic solution described by Zeldovich* with the local
density equal to critical density. It is easily seen that of all the
self-similar solutions discussed, only solution (11) satisfies
both Egs. (13) and (14).
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It is also interesting to note that solution (11) can be
obtained by assuming two constants of nature, namely, the
gravitational constant G and a characteristic velocity, as
shown in Ref. 2. Here, we assume that G is the only constant
of nature.

Of all the self-similar solutions discussed here, only the
Newtonian analog of the Einstein—deSitter universe de-
scribes an expanding, isotropic, and homogeneous universe.
As shown in Ref. 4, the hydrodynamic Eqgs. (1) admit three
types of expanding universes: forever-expanding, expansion
followed by compression, and the zero-curvature Einstein—
deSitter analog. The additional requirement of self-similar-
ity selects the Einstein—deSitter model.
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